The MAX31865 is an easy-to-use resistance-to-digital converter designed for platinum resistance temperature detectors (RTDs). An external resistor determines the sensitivity for the RTD used, and a precision delta-sigma ADC converts the RTD resistance ratio to the reference resistance into a digital output. The MAX31865’s inputs are protected against overvoltage faults up to 45V. It also includes programmable detection for RTD and cable open or short conditions.
RTDs are straightforward devices: simply a small strip of platinum that measures precisely 100Ω or 1000Ω at 0°C. Bonded to the PT100/PT1000 are two, three, or four wires.
Thus, the 4-wire RTD has two wires attached to each side of the sensor. Each wire has about 1Ω of resistance. When connected to the amplifier, the innovative amp measures the voltage across the RTD and across the wire pairs.
For example, the approximate resistances of a 4-wire PT100 RTD at 0 °C are as follows. (For a PT1000, the middle resistance would be about 1002Ω rather than 102Ω).
The two ends of the PT100/PT1000 resistor must be connected to the RTD+ and RTD- terminals of the sensor module; in the example above, a resistance of 102 Ohms can be measured. The wire connections for the 3-wire or 4-wire configuration are connected to the F+ and F- terminals. These connections may differ by only a few Ohms from the resistance values of the respective side. That is, the resistance between F+ and RTD+ or F- and RTD- may only be a few Ohms.
Since this is a SPI-capable sensor, we can use either hardware or 'software' SPI. To ensure consistent wiring across all Arduinos, we'll start with 'software' SPI. The following pins should be used:
To start reading sensor data, install the Adafruit MAX31865 library from the Arduino library manager.
Adafruit MAX31865 RTD PT100 or PT1000 Amplifier
This page has been accessed for: Today: 2, Until now: 15