2026/01/13 04:11

1/14

LamaPLC: Simatic datatypes

LamaPLC: Simatic datatypes

 TIA Portal datatypes (57-1500 / S7-1200 / S7-400 / S7-300)

o TIA Coding of data types
o TIA Coding of the memory area
e Simatic classic datatypes (S7-400 / S7-300)

e Data-types

o Pointer

o ANY

o Variant

o ARRAY

o Real

o Char
WChar
String
WString
S5time
o |EC Timers

o

[¢]

[¢]

[¢]

e Indirect addressing in Simatic Classic
e Indirect addressing in TIA Portal
o TIA Portal slice access

TIA Data type limits

TIA data

Decimal Hex Byte Description
type
18,446,744,073,709,551,615 |FFEF FEFF FFFEFFEE |WWORD. | The maximum unsigned 64 bit
ULINT value (2% - 1)
9,223,372,036,854,775,807 |7FFF FFFF FFFFFFFF |LINT g [The maximum signed 64 bit
value (27 - 1)
The largest consecutive integer
9,007,199,254,740,992 0020 0000 0000 0000|- 8 |in IEEE 754 double precision
(2%)
DWORD, The maximum unsigned 32 bit
4,294,967,295 FFFF FFFF UDINT 4 Lo 0% o 1)

lamaPLC - https://lamaplc.com/

https://lamaplc.com/lib/exe/detail.php?id=simatic%3Atypedef&media=simatic:simatic_s7_1500_7.png

Last update: 2025/01/16 10:00

simatic:typedef

https://lamaplc.com/doku.php?id=simatic:typedef

Decimal Hex TIA data Byte Description
type
2,147,483,647 7FFF FFFF DINT 4 |The maximum signed 32 bit
value (27 = 1)
The largest consecutive integer
16,777,216 01000000 - 4 in IEEE 754 single precision
(2*)
WORD, The maximum unsigned 16 bit
65335 FRFF UINT 2 lalue (2° - 1)
32 767 JFFF INT 7 The ma><1|5mum signed 16 bit
value (27 - 1)
555 FE BYTE 1 The ma>;|mum unsigned 8 bit
value (2° - 1)
127 7E SINT 1 The max7|mum signed 8 bit
value (2" - 1)
-128 80 SINT 2 Minimum signed 8 bit value
—32,768 8000 INT 2 Minimum signed 16 bit value
—-2,147,483,648 80000000 DINT 4 Minimum signed 32 bit value
-9,223,372,036,854,775,808/8000 0000 0000 0000|LINT 8 Minimum signed 64 bit value

TIA Datatypes

List of data types used by Simatic S7. The page contains the more modern TIA

variable types as well as the earlier S7-classic types.

There are four data types in: Boolean, Text, Numeric, and Date/Time. Each data type
defines the format of information that can be entered into a data field and stored in

your database.

1010
0111

Datatyp Yﬁ:‘t’:;q Range of values Examples S7-300/400(S7-1200/S7-1500
Binaries
(157_1500 FALSE or TRUE TRUE
BOOL (x) 71599 [BOOL#0 or BOOL#1 BOOL#1 X X X
lpByte) BOOL#FALSE oder BOOL#TRUE BOOL#TRUE

B#16#00 .. B#16#FF 15,

BYTE (b) 8 0..255 BYTE#15, X X X
2#0 .. 2#11111111 B#15
W#16#0000 .. W#16#FFFF 55555,

WORD (w) 16 0. 65535 WORD#55555, X X X
B#(0, 0) .. B#(255, 255) W#555555
DW#16#0000 0000 .. DW#16#FFFF FFFF |DW#16#DEAD BEEF

DWORD (dw) 32 0..4,294,967,295 B#(111, 222, 255, 200) X X X
LW#16#0000 0000 0000 0000 .. LW #16#DEAD BEEF DEAD BEEF

LWORD (Iw) 64 LW#16#FFFF FFFF FFFF FFFF B (1e 222 255 300 111 222, 255, 200) X
0..18.446.744.073.709.551.615 1 222,255,200, 111, 222, 255,

Datatyp mf:;‘ Range of values Examples $7-300/400(57-1200|S7-1500

Integers

) 128 .. 127 +42, SINT#+42
SINT (si) 8 (hex only positive) 16#0 .. 16#7F 16#1A, SINT#16#2A X X
) -32.768 .. 32.767 +1234, INT#+3221

INT (i) 16 (hex only positive) 16#0 .. 16#7FFF 16#1ABC X X X
-2.147.483.648 .. +2.147.483.647

DINT (di) 32 (hex only positive) 134116&["'3"&2”;123'456' X X X
16#00000000 .. 16#7FFFFFFF

https://lamaplc.com/

Printed on 2026/01/13 04:11

https://lamaplc.com/lib/exe/detail.php?id=simatic%3Atypedef&media=simatic:digi.png

2026/01/13 04:11 3/14 LamaPLC: Simatic datatypes
Width
Datatyp (bits) Range of values Examples $7-300/400|S7-1200/S7-1500
) 0.255 42, USINT#42
USINT (usi) 8 16#00 .. 16#FF 16#FF - X X
) 0..65535 12.345, UINT#12345
UINT (ui) 16 16#0000 .. 16#FFFF 16#BEEF - X X
) 0..4.294.967.295
UDINT (udi) 32 0000000 6 4FFEE FEFE 1.234.567.890, UDINT#1234567890 - X X
LNT () o -9.223.372.036.854.775.808 . +1.234.567.890.123.456.789,]] «
+9.223.372.036.854.775.807 LINT#+1.234.567.890.123.456.789
) 123.456.789.012.345,
ULINT (uli) 64 0..18.446.744.073.709.551.615 TS A6 59 012,345 - - X
Datatyp }'.‘i'.f:;' Range of values Examples $7-300/400|S7-1200/S7-1500
floating point numbers
REAL (1) N -3.402823e+38 .. -1.175 495¢-38 0.0, REAL0.0)))
~details +1.175 495e-38 .. +3.402823e+38 1.0e-13, REAL#1.0e-13
-1.7976931348623158e+308 ..
-2.2250738585072014e-308
Ef;i’i;il(s'” 64 . 0.0, LREAL#0.0 - X X
+2.2250738585072014e-308 ..
+1.7976931348623158e-+308
Datatyp n:'::;‘ Range of values Examples $7-300/400/S7-1200/S7-1500
Times
S5TIME (s5t) S5T#0H_OM_0S_OMS ..]
~details 16 S5T#2H_46M_305_OMS S5T#10s, SSTIME#10s X X
T#-24d20n31m235648ms .. T#13d14h15m165630ms,
TIME (1) 32 T#4+24d20h31m235647ms TIME#1d2h3m4s5ms X X X
LT#-106751d23h47m165854mST75USB0BNS || 1y o o 1t 30meT52us15ms,
LTIME (1t 64 s LTIME#200d2h2m1s8ms652us315ns - - X
LT#+106751d23h47m16s854ms775us807ns
Timer operations: IEC timers, TON (Generate on-delay), TOF (Generate off-delay), TP (Generate pulse), TONR (Time accumulator)
Datatyp m‘:':;‘ Range of values Examples $7-300/400|S7-1200(S7-1500
Counters
CHAR 8 ASCII character set 'A', CHAR#'A' X X X
WCHA.R (we) 16 Unicode character set WCHAR#'A' - X X
-details
STRING (s) n+2 g 254 characters (n) ‘Name', STRING#'lamaPLC’ X X X
-details (Byte)
WSTRING (ws) In+2 |4 16385 characters (n) WSTRING#'lamaPLC’ . X X
-details (Word)
Counter operations: CTU (count up), CTD (count down), CTUD (count up and down)
Datatyp nilllt’:;‘ Range of values Examples S$7-300/400/S7-1200/S7-1500
Date & time
DATE (d) 16 D#1990-01-01 .. D#2168-12-31 D#2020-08-14, DATE#2020-08-14 X X X
TOD (tod) - . TOD#11:22:33.444,
TME OF DAY |32 TOD#00:00:00.000 .. TOD#23:59:59.999 i ST Bunis, g X X X
LTOD (Itod) " LTOD#00:00:00.000000000 .. LTOD#11:22:33.444_555 111,) .
(LTIME_OF DAY) LTOD#23:59:59.999999999 LTIME_OF DAY#11:22:33.444 555 111
DT (dt) o Min.: DT#1990-01-01-0:0:0 DT#2020-08-14-2:44:33.111, .) .
(DATE_AND_TIME) Max.: DT#2089-12-31-23:59:59.999 DATE_AND_TIME#2020-08-14-11:22:33.444
Min.: LDT#1970-01-01-0:0:0.000000000,
16#0
'('LDTD%tE) AND TivE) 64 Max.: LDT#2020-08-14-1:2:3.4 - - X
_DATE_AND_ LDT#2262-04-11-23:47:16.854775807,
16#7FFF_FFFF_FFFF_FFFF
Min.: DTL#1970-01-01-00:00:00.0 o~
DTL (dtl) 96 Max.: DTL#2554-12-31-23:59:59.999999999 |0 1L#2020-08-14-10:12:13.23 - X X
Datatyp rl\:lltt’st;‘ Range of values Examples S$7-300/400/S7-1200/S7-1500
Pointers
Symbolic: “DB".“Tag”
POINTER (p) Absolute:
S details 48 P#10.0 X - X
P#DB4.DBX3.2
Symbolic:
ANY (any) 80 DB".StructVariable.firstComponent X i X

Absolut: P#DB11.DBX12.0 INT 3
P#M20.0 BYTE 10

lamaPLC - https://lamaplc.com/

https://lamaplc.com/doku.php?id=simatic:scl_commands_timer_counter#iec_timers
https://lamaplc.com/doku.php?id=simatic:scl_commands_timer_counter#ton
https://lamaplc.com/doku.php?id=simatic:scl_commands_timer_counter#tof
https://lamaplc.com/doku.php?id=simatic:scl_commands_timer_counter#tp
https://lamaplc.com/doku.php?id=simatic:scl_commands_timer_counter#tonr
https://lamaplc.com/doku.php?id=simatic:scl_commands_timer_counter#ctu
https://lamaplc.com/doku.php?id=simatic:scl_commands_timer_counter#ctd
https://lamaplc.com/doku.php?id=simatic:scl_commands_timer_counter#ctud

Last update: 2025/01/16 10:00

simatic:typedef

https://lamaplc.com/doku.php?id=simatic:typedef

Datatyp mf:;‘ Range of values Examples $7-300/400(57-1200|S7-1500
Symbolic:
“Data_TIA_Portal”.
VARIANT (var) 0 StructVariable.firstComponent - X X
Absolute: %MW10
P#DB10.DBX10.0 INT 12
BLOCK_FB 0 - X X
BLOCK_FC 0 X X
BLOCK_DB 0 X -
BLOCK_SDB 0 X
VOID 0 X X X
PLC_DATA TYPE 0 X X X

TIA Coding of data types

The following table lists the coding of data types for the ANY pointer:

Hexadecimal code Data type Description
B#16#00 NIL Null pointer
B#16#01 BOOL Bits

B#16#02 BYTE bytes, 8 bits
B#16#03 CHAR 8-bit characters
B#16#04 WORD 16-bit words
B#16#05 INT 16-bit integers
B#16#06 DWORD 32-bit words
B#16#07 DINT 32-bit integers
B#16#08 REAL 32-bit floating-point numbers
B#16#0B TIME Time duration
B#16#0C S5TIME Time duration
B#16#09 DATE Date

B#16#0A TOD Date and time
B#16#0E DT Date and time
B#16#13 STRING Character string
B#16#17 BLOCK_FB |Function block
B#16#18 BLOCK FC |Function
B#16#19 BLOCK DB |Data block
B#16#1A BLOCK SDB|System data block
B#16#1C COUNTER |Counter
B#16#1D TIMER Timer

TIA Coding of the memory area

The following table lists the coding of the memory areas for the ANY pointer:

Hexadecimal code|Area|Description

B#16#80 P 1/O

B#16#81 I Memory area of inputs
B#16#82 Q Memory area of outputs

https://lamaplc.com/

Printed on 2026/01/13 04:11

2026/01/13 04:11

5/14

LamaPLC: Simatic datatypes

Hexadecimal code Area/Description

B#16#83 M Memory area of bit memory
B#16#84 DBX |Data block

B#16#85 DIX |Instance data block
B#16#86 L Local data

B#16#87 Vv Previous local data

Simatic classic datatypes (S7-300 / S7-400)

Type and

Area and number notation

description size in bits format options (lower .. higher value) example in STL
BOOL (Bit) 1|Boolean text TRUE/FALSE TRUE
. L B#16#10
BYTE (Byte) 8|Hexadecimal number |B#16#0 to B#16#FF L byte#16#10
. 2#0 to

WORD (Word) 16|Binary number 2#1111 1111 1111 1111 L 2#0001_0000_0000 0000
Hexadecimal [W#16#0 to L W#16#1000
number W#16#FFFF L word#16#1000
BCD C#0 to C#999 L C#998
pecimal B#(0,0) to L B#(10,20)

. B#(255,255) L byte#(10,20)
unsigned
DWORD 2#0 to L
(Double word) 32|Binary number 2#1111 1111 1111 1111 |2#1000 0001 0001 1000 _

1111 1111 1111 1111 1011 1011 0111 1111

Hexadecimal |W#16#0000_0000 to| 0¥ 16#00A2.1234
number W#16#FFFF_FFFF dword#16#00A2 1234
pecimal B#(0,0,0,0) to L B#(1, 14, 100, 120)

. B#(255,255,255,255)|L byte#(1,14,100,120)
unsigned

INT (Integer)

16 Decimal number

-32768 to 32767

L 101

signed

DINT (Double Decimal number L#-2147483648 to
integer) 32 signed L#2147483647 LL#101
REAL . . .

. . IEEE Floating-point Upper limit +/-3.402823e+38
(Floating-point 32 number Lower limit 4+/-1.175495e-38 L1234567e+13
number)
S5TIME Lo S5T#0H_OM_0S_10MS to L S5T#0H_1M _0S_OMS
(SIMATIC 16 %;ﬁ'g‘ég}jﬁ?s Of |S5T#2H 46M_305 OMS and |L
time) S5T#0H_OM_0S_OMS SSTIME#0H_1H_1M_0S_OMS
TIME (IEC 3,|[EC time in steps of 1 tsz“D—ZOH—ﬂM—BS—MSMS LT#0D_1H_1M_0S_OMS
time) ms, integer signed T#24D_20H_31M_23S_647MS L TIME#0D_1H 1M 0S OMS
DATE (IEC 16 IEC date in steps of 1 [D#1990-1-1 to L D#1996-3-15
date) day D#2168-12-31 L DATE#1996-3-15
TIME OF DAY 32/Time in steps of 1 ms TOD#0:0:0.0 to L TOD#1:10:3.3
(Time) P TOD#23:59:59.999 L TIME_OF DAY#1:10:3.3
CHAR 8|ASClII characters A', 'B' etc. L'E
(Character)

lamaPLC - https://lamaplc.com/

Last update: 2025/01/16 10:00

simatic:typedef

https://lamaplc.com/doku.php?id=simatic:typedef

Data-types

Pointer ## ANY ## Variant ## ARRAY ## Real ## Char ## WChar ## String ## WString ##
S5time ## |EC Timers ##

Pointer

An example above to the pointer: P#DB100.DBX14.0 WORD 4

The following elements make up a pointer:

P# Pointer identifier

DB100 |Start Data block / memory area

.DB14.0 |Start offset within the data block

WORD 4 |Length of the data to be included in the pointer

You cannot use MOVE to access pointer data. This is because the Pointer is considered an “Any”
data type, which MOVE does not accept. BLKMOV must be used instead, and in order to use that,
Optimized Data must be turned off!

A parameter of the type POINTER is a pointer that can point to a specific tag. It occupies 6 bytes (48
bits) in memory and may contain the following tag information:

e DB number, or 0 if the data is not stored in a DB
e Memory area in the CPU

e Tag address

The following figure shows the structure of parameter type POINTER:

Any

Bit

15 .

Pointer format

B T

Bit
.. D

Byte 2 Memory area glofojo|o|b|b|b
Byte 4 bl bl b|b|b|b]|b|b|Bb]|b b= |x [x
"'\-_\w_,_:—"'

y
b = Byte address of the tag

Byle 3

Byla 5

x = Bil address of

the tag

An ANY type parameter points to the start of a data area and specifies its length. An ANY pointer
occupies 10 bytes of memory and may contain the following information:

Data type:

Data type of the elements of the data area

https://lamaplc.com/

Printed on 2026/01/13 04:11

https://lamaplc.com/doku.php?id=simatic:scl_commands#blkmov
https://lamaplc.com/doku.php?id=simatic:tia_knowhow#db_opt

2026/01/13 04:11 7/14 LamaPLC: Simatic datatypes

Repetition factor:
Number of elements of the data area

DB number:
Data block that contains the declaration of data area elements.

Memory area:
Memory area of the CPU that stores the data area elements.

Start address of the data in the format “byte.bit”:
Data area start identified by the ANY pointer.

Zero pointer:
Use the zero pointer to indicate a missing value. A missing value may indicate that no value exists, or
that the value is not yet known. A zero value represents the absence of a value, but is also a value.

In the programming languages SCL and STL, memory of any kind can be transferred upon a block call
if an ANY pointer has been programmed at a block parameter.

The ANY pointer cannot, however, store any information on the structure of the memory. For
example, the ANY pointer does not save the information that it points to a tag of the PLC data type.
The ANY pointer sees this as an ARRAY of BYTE.

Parameters of the ANY data type can be passed to system function blocks (SFBs) or system functions
(SFCs).

Memory area
:+ . Foran S7-1500 CPU, the ANY pointer can also only point to memory areas with
“Standard” access mode.

Bit Bit
15 . U T A .0

Byte 0 Byla 1
Y Data type 4
Byte 2 Repetition factor Byte 3
Byte 4 Byta 5
Byte & Memoary araa olo|o|o|o|b|b|b| Bye?
Byte & bl Bl bl B B| bl B[bB] Bl b|b|b|b|x|x|x| Byted
L o . A
b = Byle addrass of the tag % = Bit addrass of
the tag

Variant

A parameter of the VARIANT type is a pointer that can point to tags of different data types other than
an instance. The VARIANT pointer can be an object of an elementary data type, such as INT or REAL. It
can also be a STRING, DTL, ARRAY of STRUCT, UDT, or ARRAY of UDT. The VARIANT pointer can

lamaPLC - https://lamaplc.com/

Last update: 2025/01/16 10:00 simatic:typedef https://lamaplc.com/doku.php?id=simatic:typedef

recognize structures and point to individual structure components. An operand of data type VARIANT
occupies no space in the instance data block or work memory. However, it will occupy memory space
on the CPU.

A tag of the VARIANT type is not an object but rather a reference to another object. Individual
elements of the VARIANT type can only be declared on formal parameters within the block interface of
a function in the VAR_IN, VAR_IN_OUT and VAR_TEMP sections. For this reason, it cannot be declared
in a data block or in the static section of the block interface of a function block, for example, because
its size is unknown. The size of the referenced objects can change.

You can use VARIANT to generate generic function blocks or functions. When a block is called, you
can connect the parameters of the block to tags of any data type. When a block is called, the type
information of the tag is transferred in addition to a pointer to the tag. The code of the block can then
be executed according to its type in line with the tag transferred during runtime.

If, for example, a block parameter of a function has the VARIANT data type, then a tag of the integer
data type can be transferred at one point in the program, and a tag of the PLC data type can be
transferred at another point in the program. With the help of the VARIANT instructions, the function is
then in a position to react to the situation without errors.

| You can only point to a complete data block if it was originally derived from a user-
L5 defined data type (UDT).

Array

The Array data type represents a data structure that consists of a fixed number of components of the
same data type. All data types except Array are permitted.

A tag with the Array data type always starts at a WORD limit.

The array components are addressed by means of an index. In the array declaration, the index limits
are defined in square brackets after the keyword Array. The low limit must be smaller than or equal to
the high limit. An array may contain up to six dimensions, the limits of which can be specified
separated by a comma.

Length: Number of components * length of the data type

Format: Array [low limit...high limit] of <data type>

Index limits: Depending on the CPU, the storage capacity of a data block is limited and the number
of components of the Array is therefore also limited. However, you may initialize the addressing of the
array components at any position within index limits.

Index limits (16-bit limits): [-32768..32767] of <data type>

Index limits (32-bit limits): [-2147483648..2147483647] of <data type>

Data type: Bit strings, integers, floating-point numbers, timers, character strings, structures

https://lamaplc.com/ Printed on 2026/01/13 04:11

2026/01/13 04:11 9/14 LamaPLC: Simatic datatypes

Real, LReal IEEE 754

REAL (32 bit)

41 bithe - 8 bit L 23 bit g
|5ign| | exponent | | mantissa

LREAL (64 bit)

1 Ditie-4 11 bit > 52 bit Ll
[sign | | exponent] | mantissa

< 32 bit > 32 bit =

¢ Sign (of Mantissa) : 0: positive, 1: negative

» (Biased) exponent : The exponent field needs to represent both positive and negative
exponents.

e (Normalised) mantissa : Mantissa is part of a number in scientific notation or a floating-point
number, consisting of its significant digits.

Char

An operand of data type CHAR has a length of 8 bits and occupies one BYTE in the memory.

The CHAR data type stores a single character in ASCII format. You can find information on the
encoding of special characters under “See also > STRING”.

Length (bits): 8

Format: ASCII characters

Value range: ASCIl character set
Example of value inputs: 'A', CHAR#'A'

WChar

An operand of data type WCHAR (Wide Characters) has a length of 16 bits and occupies two BYTE in
the memory.

The WCHAR data type saves a single character of an expanded character set which is stored in
Unicode format. However, only a subset of the entire Unicode range is covered. When a control
character is entered, it is represented with a dollar sign.

Length (bits): 16 bit

Format: Unicode

Range of values: $0000 - $D7FF
Example of value input: WCHAR#'a'

lamaPLC - https://lamaplc.com/

https://lamaplc.com/lib/exe/detail.php?id=simatic%3Atypedef&media=simatic:real_type.png
https://lamaplc.com/doku.php?id=com:ascii

Last update: 2025/01/16 10:00 simatic:typedef https://lamaplc.com/doku.php?id=simatic:typedef

String

String types in S7 are not NULL “terminated” like C-style strings. They instead have 2 “hidden”
characters that precede the string data. The first hidden character is the maximum size of the string,
which is 'n" in the example above, and the second hidden character is the actual length of the string
(i.e. the number of characters stored).

So the string definition MyStr: STRING[10]:="“abcdef” would contain the following ASCII codes:
10, 06, 97, 98, 99, 100, 101, 102

10: maximum (declared) length of the character string
06: the current length of the string
97’ 98: nan' “b”,-.

Length (bits): n + 2 (An operand of the STRING data type occupies two bytes more than the
specified maximum length in the memory)

Format: ASCII character string incl. special characters

Value range: 0 to 254 characters

Example of value inputs: '‘Name', STRING#'NAME'

WString

An operand of data type WSTRING (Wide String) stores several Unicode characters of data type
WCHAR in one character string. If you do not specify a length, the character string has a preset length
of 254 characters. In a character string, all characters of the Unicode format are permitted. This
means you can also use Chinese characters in a character string.

Length (bits): n + 2 (An operand of the WSTRING data type occupies two WORDs more in the
memory than the specified maximum length)

Format: Unicode character string;

Range of values: Preset value: 0 to 254 characters, maximal possible value: 0 to 16382
Example of value inputs: WSTRING#'Hello World'

When declaring an operand of data type WSTRING you can define its length using square brackets (for
example WSTRING[10]). If you do not specify a length, the length of the WSTRING is set to 254
characters by default. You can declare a length of up to 16382 characters (WSTRING[16382]).

The specification of the characters occurs in single quotes and always with the qualifier WSTRING#.

A character string can also contain special characters. The escape character $ is used to identify
control characters, dollar signs and single quotation marks.

Character|/Hex Meaning Example

$L or $1 [000A Line feed '$LText', '$000AText'
Line break | | ‘$NText!,

$N 000A and 000D |[The line brealk occupies 2 characters in the '$000A$000DText
character string.

$P or $p |000C Page feed '$PText', '$000CText'

https://lamaplc.com/ Printed on 2026/01/13 04:11

https://lamaplc.com/doku.php?id=com:ascii

2026/01/13 04:11 11/14 LamaPLC: Simatic datatypes

Character|/Hex Meaning Example

$R or $r (000D Carriage return (CR) 'SRText','$000DText'

$T or $t (0009 Tab '$TText', '$0009Text'

$$ 0024 Dollar sign '100$$t', '100$0024t'

$' 0027 Single quotation mark '$'Text$",'$0027Text$0027

The maximum length of the character string can be specified during the declaration of an operand
using square brackets after the keyword WSTRING (for example, WSTRING[4]). If the specification of
the maximum length is omitted, the standard length of 254 characters is set for the respective
operand.

If the actual length of a specified character string is shorter than the declared maximum length, the
characters are written to the character string left-justified and the remaining character spaces remain
undefined. Only occupied character spaces are considered in the value processing.

Access to block parameters of data type WSTRING
Operands of the data type WSTRING can be transferred as parameters up to the maximum length for
blocks with “optimized” access.

For function blocks (FB) with “standard” access, operands of the data type WSTRING can be declared
as parameters in all sections of the block interface except in the section “InOut”. For a function (FC)
with “standard” access, only operands of the data type STRING can be transferred as parameters.

The function value of an FC in the “Return” section and expressions in the SCL programming
language are another exception to this rule. In these cases, the WSTRING tag must not be longer than
1022 characters. If you need a WSTRING tag with more than 1022 characters, declare a tag of the
data type “WSTRING” with the required character length in the section “Temp” and assign the
function value to the tag.

Example
The example below shows the byte sequence if the WSTRING[4] data type is specified with output
value 'AB":

Byte O Byte 1 Byte 2 Byla 3 Byla 4 Byle 5 Byle & Byte T
A A A A A LY A M
I L L ki L LS L L k
7 1] T a7 al|l7 0|7 o7 a7 1] 7 i}
L A e A !
T T R RS
Max. length of the string: 4 Actual length of the string ("AB" = 2) Unicode value of A Unicode value of B

e Underscores in time and date are optional
e It is not necessary to specify all time units (for example: T# 5h10s is valid)
e Maximum time value = 9,990 seconds or 2H_46M _30S

lamaPLC - https://lamaplc.com/

Last update: 2025/01/16 10:00

simatic:typedef

https://lamaplc.com/doku.php?id=simatic:typedef

S5TIME Struktur

15.. .8 7.]
|;-cx1't| plolol1|olo'1lo|ol1 11104
-_‘,_A - e, - e, > . .
l 1 2 T
Time base Time value in BCD (0 to 999)
1 second

Irmelevant: These bits are ignored when the timer is started

Time base|Binary Code
10 ms 00
100 ms |01
ls 10
10s 11

IEC timers (TP, TONR,

TON, TOF)

You can find more information about these timer types here: SCL commands (timer, counter)

Indirect addressing in Simatic Classic

Indirect addressing of DB tags

Indirect addressing Example
Indirect addressing of a DB Data type “BLOCK DB”
#block.%DBW3

#block.DW(IDX := #myInt)

%DB1.DW(IDX :=#myInt)

WORD_TO_BLOCK_DB(#myWord).%DBW3

WORD_TO_BLOCK_DB(#myWord).DW(IDX:=#myInt)

Indirect addressing of 1/0

QB(IDX :=#myint):P

Indirect addressing of PLC tags

QB(IDX :=#myInt)

MW(IDX :=#myInt)

IX(IDX :=#myIntl,Bit:=#myInt2)

https://lamaplc.com/

Printed on 2026/01/13 04:11

https://lamaplc.com/lib/exe/detail.php?id=simatic%3Atypedef&media=simatic:s5timeformat.png
https://lamaplc.com/doku.php?id=simatic:scl_commands_timer_counter#iec_timers

2026/01/13 04:11 13/14 LamaPLC: Simatic datatypes

Indirect addressing in TIA Portal

In many cases, indirect addressing may be necessary in PLC technology. Its typical application is the
preparation of signals for communication and SCADA, as well as the transformation of communication
and SCADA signals and the “unpacking” of bits.

For example

¢ In the case of SCADA transmission, it is easier to use a WORD and transfer 16 bits in it

e Modbus communication is based on WORD registers. These are easy to handle with indirect
addressing

e Many measuring units use two of the Modbus WORD registers (DWORD) to transfer one REAL.
Structurally, DIWORD and REAL are not the same, but the signals can be easily read with
indirect addressing

TIA Portal slice access

e from Bit to: BYTE, WORD, DWORD
e from Byte to: WORD, DWORD
e from Word to: DWORD

bit := byte.%X1; // bit 1 from byte
bit := word.%X4; // bit 4 from word
bit := dword.%X11; // bit 11 from dword
byte := word.%B1; // 2.byte from word
byte := dword.%B2; // 3. byte from dword
word := dword.%sW0; // 1. word from dword

The following example is a SPLIT function that splits a WORD Input variable into bits:

// FC Input : inWord (Word)
// FC output: 16 variable bit0..bitl5 (Bool)
// splitting

#bit0 := #inWord.%XO0;
#bitl := #inWord.%X1;
#bit2 := #inWord.%X2;
#bit3 := #inWord.%X3;
#bitd := #inWord.%X4;
#bith5 := #inWord.%X5;
#bit6 := #inWord.%X6;
#bit7 := #inWord.%X7;
#bit8 := #inWord.%X8;
#bit9 := #inWord.%X9;

lamaPLC - https://lamaplc.com/

Last update: 2025/01/16 10:00 simatic:typedef https://lamaplc.com/doku.php?id=simatic:typedef

#bitA := #inWord.%X10;
#bitB := #inWord.%X11;
#bitC := #inWord.%X12;
#bitD := #inWord.%X13;
#bitE := #inWord.%X14;
#bitF := #inWord.%X15;

And this is a JOIN function that assembles a WORD from 16 bits:

// FC Input: 16 variable bit0@0O..bitl5 (Bool)

// FC Output : OUT (Word)

// JOIN

// Assemble bits to a word

#OUT .%X0 := #bit0oO;

#0OUT .%X1 := #bit01;

#OUT .%X2 := #bit02;

#OUT .%X3 := #bit03;

#OUT .%X4 := #bit04;

#OUT .%X5 := #bit05;

#0OUT .%X6 := #bit06;

#0OUT .%X7 := #bit07;

#0OUT .%X8 := #bit08;

#OUT .%X9 := #bit09;

#0OUT . %X = #bitlo0;

#OUT .%X11 := #bitll,;

#OUT . %X12 := #bitl2;
X
X

o?°
=

(o]
1l

#OUT . %X13 := #bitl3;
#OUT .%X14 := #bitl4;
#OUT .%X15 := #bitl5;

simatic, s7, scl, datatype, IEEE 754, string, wstring, S5TIME, indirect addressing, slice access, PLC, TIA

This page has been accessed for: Today: 3, Until now: 514

From:
https://lamaplc.com/ - lamaPLC

Permanent link:
https://lamaplc.com/doku.php?id=simatic:typedef

Last update: 2025/01/16 10:00

https://lamaplc.com/ Printed on 2026/01/13 04:11

https://lamaplc.com/doku.php?id=tag:simatic&do=showtag&tag=simatic
https://lamaplc.com/doku.php?id=tag:s7&do=showtag&tag=s7
https://lamaplc.com/doku.php?id=tag:scl&do=showtag&tag=scl
https://lamaplc.com/doku.php?id=tag:datatype&do=showtag&tag=datatype
https://lamaplc.com/doku.php?id=tag:ieee_754&do=showtag&tag=IEEE_754
https://lamaplc.com/doku.php?id=tag:string&do=showtag&tag=string
https://lamaplc.com/doku.php?id=tag:wstring&do=showtag&tag=wstring
https://lamaplc.com/doku.php?id=tag:s5time&do=showtag&tag=S5TIME
https://lamaplc.com/doku.php?id=tag:indirect_addressing&do=showtag&tag=indirect_addressing
https://lamaplc.com/doku.php?id=tag:slice_access&do=showtag&tag=slice_access
https://lamaplc.com/doku.php?id=tag:plc&do=showtag&tag=PLC
https://lamaplc.com/doku.php?id=tag:tia&do=showtag&tag=TIA
https://lamaplc.com/
https://lamaplc.com/doku.php?id=simatic:typedef

	LamaPLC: Simatic datatypes
	TIA Data type limits
	TIA Datatypes
	TIA Coding of data types
	TIA Coding of the memory area

	Simatic classic datatypes (S7-300 / S7-400)
	Data-types
	Pointer
	Any
	Variant
	Array
	Real, LReal IEEE 754
	Char
	WChar
	String
	WString
	S5TIME
	S5TIME Struktur

	IEC timers (TP, TONR, TON, TOF)

	Indirect addressing in Simatic Classic
	Indirect addressing in TIA Portal
	TIA Portal slice access

