
2026/01/12 11:47 1/21 Automation! v0.0

lamaPLC - http://lamaplc.com/

Automation! v0.0

Prolog

 My name is Sandor Vamos. I was born in Hungary, have lived in Germany
for approximately 20 years, and now hold German citizenship. I speak
Hungarian, German, and English. I am over 50 years old and have about
25 years of experience in programming and designing industrial systems. I
mainly design with the market leader in Europe, Simatic systems, but I
have also worked on many other systems (AB Rockwell, Bosch, Wago,
Codesys, Mitsubishi, …).

At first, I worked on production lines at Bosch; later, I founded my own company and worked in power
plant technology. The Budapest (Rákospalota) Waste Incineration Plant (4 boilers, turbine, district
heating) has been operating with my software for more than 20 years.

In 2006, my family and I moved to Germany, where I initially worked on programming trains; for
example, I wrote the door control software module for the ICE4 (intercity train). For several years, I
have been working on shore power supply for container vessels and cruise ships. In this area, my
current references include the Hamburg CTB, the Toll Ports of Melbourne and Burnie, and the Thialf
and Sleipnir ships in Rotterdam.

In addition to Simatic systems, I also work extensively with Arduino and ESP32 microcontrollers. I use
these primarily for IoT projects, often as an economical complement to Simatic systems. Simatic is an
expensive system, and in many cases it is not cost-effective to use; in those cases, its “little brother”,
Arduino, comes in handy. In addition to control, I implement visualization (SCADA/HMI), typically with
WinCC for Simatic systems. For data collection and exceptional communication, I develop IPC
solutions in LabVIEW, which, of course, connect to Simatic and Arduino.

I use a wide range of industrial communication systems to service and communicate with the
systems: ProfiNet, ProfiBus, (Industrial) Ethernet protocols, Modbus, IEC61850, … - check out my site.

The idea for the online book stems from the fact that I have many notes on “real” programming, i.e.,
the programming I use in practice. These are tricks and procedures that official books rarely present,
or present with a significantly different emphasis. I felt that, amid the flood of technical books, a
description focused on the practical application of PLCs might have its place.

The book Automation! is an ever-expanding online documentation project based primarily on my
experiences. I highlight the knowledge I consider essential for programming. I also adjust the
language so it reads as if I were explaining to a friend which things are unimportant and which are
essential. The online documentation will also be available for download as a book, but I will provide it
with a version number, precisely because of the continuous expansion. For now, the version starts
with 0, since I have only just started writing this.

Sándor Vámos; lamaPLC.com

To quickly review the content, use the “Table of contents” function in the
upper-right corner ☝ (on PC).

http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:simatic_s7_1500_f_ctb.png
https://lamaplc.com/
https://lamaplc.com/doku.php?id=impressum

Last update: 2026/01/06 13:13 automation:start http://lamaplc.com/doku.php?id=automation:start&rev=1767705197

http://lamaplc.com/ Printed on 2026/01/12 11:47

You can save the entire page content as a PDF by clicking the PDF icon in the
right menu (Export to PDF).

A few important notes regarding the document (Automation!):

The document (Automation!) is freely available, but I hold the rights to publish it. Redistribution
– even partially – requires my approval.
The document's content reflects my personal judgment. Clearly, I cannot provide a
comprehensive and detailed Simatic documentation, partly due to length constraints.
The example programmes are written in SCL because it is the language I use for programming.
Although I have taken great care, there might still be errors in this document. If you find any,
please let me know at: info at lamaplc.com.

2026/01/06 13:34

Simatic variable types

Bit & Byte

 The Bit is the simplest form; it's a signal that can be true or false, with its official English
equivalents being “TRUE” or “FALSE,” or even simply 0 or 1. There is no 2 anymore because
two is represented by 10 according to the rules of the binary number system, which in this
case is not ten but one zero. To clearly distinguish this, we write numbers in the decimal
number system “just like that,” for example, 10. If this is a number in the binary number
system, then we denote it as 2#10.

The decimal number system stems from the fact that we have ten fingers and, historically, used them
to perform all our calculations. If we had, say, three fingers on each hand, meaning six in total, then
we would be using the six-number system now. Computing is based on the above yes-or-no logic, i.e.,
the binary number system, which is why we often use the hexadecimal number system. I'll talk about
that later. Let's first look at the binary number system through a byte to see how it works.

A byte is a variable type consisting of 8 bits. The value stored in it must be somewhere between 0 and
255, depending on the bit positions. The example below may help you understand this a little:

http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:10.png

2026/01/12 11:47 3/21 Automation! v0.0

lamaPLC - http://lamaplc.com/

Let's take the bit sequence “01010110” as an example, which fills the above byte. The bits of a byte
are always numbered from right to left; position 0 is always on the right. Each position corresponds to
a given power of the binary number system; position 4 corresponds to 24 = 16. If there is a 0 in this
position in the example, then it does not “count”; if there is a one, then its value “counts”, and as can
be seen in the rows marked in green, the sum of the “counting” rows gives the current decimal value
of the byte, 86. That is, 2#01010110 = 86.

Therefore, the byte reaches its maximum value when all bits are set to 1. It can be calculated that
2#11111111 = 255. The byte data type holds values between 0 and 255.

In computing, we use the base-10 number system, as well as the binary and base-16 number
systems. The values ​​described in it are called hexadecimal numbers and are denoted by the prefix
“16#” or sometimes “hex#”. Sometimes the hexadecimal number system is simply the hash, like
this: “#ABCD”. The hexadecimal number system changes order of magnitude at 16, meaning that a
position can contain a value between 0 and 15. This can be very confusing in the base 10 number
system, so the two-digit positions are denoted by letters:

10 = 16#A
11 = 16#B
12 = 16#C
13 = 16#D
14 = 16#E
15 = 16#F

If a byte reaches its maximum value, meaning every bit is set to “1”, then: 2#11111111 = 255 =
16#FF

If we calculate: F, i.e., “15” * 16 + “15” = 255

In some ways, this can make our lives easier, because if we see a value of “16#FF” somewhere, or a
longer series of these, for example “16#FFFF_FFFF”, then we can suspect that we have reached the
maximum value of one of the variable types. I would also like to mention the 8-bit, i.e., octal number

http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:byte_pos_en.png

Last update: 2026/01/06 13:13 automation:start http://lamaplc.com/doku.php?id=automation:start&rev=1767705197

http://lamaplc.com/ Printed on 2026/01/12 11:47

system, it sometimes still occurs here and there, for example, in the case of numerical symbols, but
only rarely, we don’t really use it.

DEAD_BEEF

Just as “FF” is likely to represent the maximum of a given variable type, dead beef is a test value
designation, a play on letters. The letters of the hexadecimal number system are a, b, c, d, e, f.
#dead_beef contains all of them except c, so it is helpful for testing. The Windows calculator,
switched to programmer mode, is very helpful for hex-dec-bin conversions. From this, it turns out that
the value of 16#dead_beef is:

2026/01/06 15:01

More information: TIA Datatypes: S7 data types summary table

2026/01/06 13:34

BYTE – WORD type variables

There are plenty of variables in the world of automation. They differ in scope (size) and internal
structure depending on their use.

The simplest variable types have no internal structure, i.e., they can describe ones and zeros in
different scopes:

http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:dead_beef.png

2026/01/12 11:47 5/21 Automation! v0.0

lamaPLC - http://lamaplc.com/

The longest 64-bit LWord didn't fit in the example above, but I think it's relatively easy to imagine.
The byte positions are on the bottom row. If everything works well, this is the byte order for the
longer variable types, but sometimes confusion arises in the matrix, and this order gets “tangled”.

This most often happens when we try to transfer long variables via communication to other systems,
such as HMI. In such cases, it is definitely worth testing the transfer, for example, with the above
trick, because when the specified #deadbeef is on one side. If the destination side shows #beefdead
or #efbeadde, we can rightly suspect a conversion discrepancy, which is easiest to correct on the
starting side by swapping the structures.

The following types are unsigned (UNSIGNED), meaning their minimum value is always zero.

Let's review the basic variable types and their features:

Type Bit Min. Max. Value range HEX Value range DEC
BYTE 8 0 28-1 0 .. FF 0 .. 255
WORD 16 0 216-1 0 .. FFFF 0 .. 65.535
DWORD 32 0 232-1 0 .. FFFF_FFFF 0 .. 4.294.967.295
LWORD 64 0 264-1 0 .. FFFF_FFFF_ FFFF_FFFF 0 .. 18.446.744.073.709.551.615

Any rules do not bind the contents of the above variables; they actually only contain some bit
combinations. They can't have negative values by default; INT type variables are used for that.

More information: TIA Datatypes: S7 data types summary table

2026/01/06 13:34

INT type variables

In the case of the INT, which is the integer type, the definition becomes slightly more complex in
terms of formal constraints because of the introduction of the sign bit. This means that the highest

http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:byte_word_dword_en.png

Last update: 2026/01/06 13:13 automation:start http://lamaplc.com/doku.php?id=automation:start&rev=1767705197

http://lamaplc.com/ Printed on 2026/01/12 11:47

value of the variable's position, the first bit on the left, will represent the sign: if it is “1”, the variable
indicates a negative number, whereas if it is “0”, it indicates a positive one.

Really, just for completeness, in the case of negative numbers, the program uses
the so-called “two's complement” representation. That is, it first negates all the
bits of the numerical value, i.e., it converts 0 to 1 and vice versa, and then adds 1
to the resulting value. This conversion means that the negative value cannot be
read directly from the bit combination unless the conversion is performed again
in the opposite direction:

As a result, Simatic only uses binary and hexadecimal notations for positive numbers, meaning that
negative hexadecimal or binary values will not show the actual numerical value but instead the value
based on the bit pattern. For example, A, which equals ten, will still be 16#A, but -A, which equals
-10, will be displayed in WORD format as FFF6. This misunderstanding is resolved by the rule that
hexadecimal and binary signals cannot have negative values in Simatic:

In the above example, I tried to assign a value to an INT variable. It is clear that the compiler
accepted the negative value when specified in decimal, but not when specified in hexadecimal or
binary. Let's look at the contents of the INT variable in several forms:

http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:two_complement_en.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:int_neg_hex.png

2026/01/12 11:47 7/21 Automation! v0.0

lamaPLC - http://lamaplc.com/

DEC SINT HEX (8-bit) SINT BIN (8-bit) INT HEX (16-bit) INT BIN (16-bit)
12 16#7F 2#0111_1111 16#007F 2#0000_0000_0111_1111
1 16#01 2#0000_0001 16#0001 2#0000_0000_0000_0001
-1 16#FF 2#1111_1111 16#FFFF 2#1111_1111_1111_1111
-85 16#AB 2#1010_1011 16#FFAB 2#1111_1111_1010_1011
-128 16#80 2#1000_0000 16#FF80 2#1111_1111_1000_0000

The INT type is optimized for decimal handling; it can also be used in
hexadecimal and binary forms, but in these cases, you need to pay close
attention to the type's special characteristics.

Compared to byte and word type variables, this means that the maximum value of these variables is
almost halved when dealing with decimal numbers. However, roughly the same magnitude can be
used in the negative direction. For example, a one-byte-long SINT type will operate within the range
-128 to 127, unlike the “plain” BYTE range of 0 to 255.

The letter “S” in the SINT definition stands for the word “short”, as the INT type is the default integer
(16 bits), while SINT is short, with half the bit length—8 bits. The letter “D” represents the word
“double,” with its 32 bits.

Type Name Bit Minimum Maximum Value range
HEX * Value range DEC

SINT short
integer 8 -(27) 27-1 0 .. 7F -128 .. 127

INT integer 16 -(215) 215-1 0 .. 7FFF -32.768 .. 32.767

DINT double
integer 32 -(231) 231-1 0 .. 7FFF_FFFF -2.147.483.648 .. +2.147.483.647

LINT
double
long
integer

64 -(263) 263-1 0 .. 7FFF_FFFF_
FFFF_FFFF

-9.223.372.036.854.775.808 ..
+9.223.372.036.854.775.807

* Negative number ranges are not supported in hexadecimal and binary formats.

UINT type variables

The unsigned UINT type (the letter U stands for unsigned) removes the hassle of dealing with
negative values from the world of the INT type. It corresponds to basic types like BYTE, WORD, etc., in
terms of value range, but with INT it indicates that we want to treat the contents of the variables as
numeric values.

Type Name Bit Minimum Maximum Value range
HEX * Value range DEC

USINT unsigned short
integer 8 0 28 0 .. FF 0 .. 255

UINT unsigned
integer 16 0 216 0 .. FFFF 0 .. 65.535

Last update: 2026/01/06 13:13 automation:start http://lamaplc.com/doku.php?id=automation:start&rev=1767705197

http://lamaplc.com/ Printed on 2026/01/12 11:47

Type Name Bit Minimum Maximum Value range
HEX * Value range DEC

UDINT Unsigned double
integer 32 0 232 0 .. FFFF_FFFF 0 .. 4.294.967.295

ULINT Unsigned long
integer 64 0 264 0 .. FFFF_FFFF_

FFFF_FFFF 0 .. 18.446.744.073.709.551.615

* Negative number ranges are not supported in hexadecimal and binary formats.

More information: TIA Datatypes: S7 data types summary table

2026/01/06 13:34

REAL type variables

REAL type variables (REAL, LREAL) are defined by the IEEE 754 (IEEE 754/1985 Floating Point
Number Format) standard. This is a fairly complex type that, despite its intimidating complexity, is
well-suited for storing fractional numbers.

If you are interested in the definition of the type, please look it up on Wikipedia, for example, because
I can't; I can't explain how this type works simply.

Sign: The sign is determined by one bit (red color). This bit can be either “0” (positive) or “1”
(negative).
Exponent: The exponent ranges from 128 to -127.
Mantissa: Only the mantissa is a fractional part of the overall value.

Type Bit Value range DEC
REAL 32 -3.402823e+38 .. -1.175 495e-38 .. +1.175 495e-38 .. +3.402823e+38

LREAL 64 -1.7976931348623158e+308 .. -2.2250738585072014e-308 ..
+2.2250738585072014e-308 .. +1.7976931348623158e+308

In practice, REAL is suitable for handling fractions and large values. Due to its nature, it is mainly used
for processing and evaluating measurements. It is important to note that, because of its structure, if a
very large value is stored in it and we try to increase or decrease it by, say, a very small value,
nothing will happen; the stored value will not change. The type is inherently not suitable for handling
exact counters, since it handles numbers “in order of magnitude.“ INT is more appropriate for
counting functions.

More information: TIA Datatypes: S7 data types summary table

http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:real_en.png

2026/01/12 11:47 9/21 Automation! v0.0

lamaPLC - http://lamaplc.com/

2026/01/06 13:34

CHAR type variables

CHAR (character) types are suitable for storing a single letter each. The original CHAR uses codes
from the ancient ASCII character mapping table. This table contains a mix of 255 different characters
(letters, numbers, control characters, graphic symbols). Its advantage is that it requires only 1 byte,
but its disadvantage is that the character set is quite limited; for example, Hungarian or Chinese
accented characters are mostly excluded.

The extended version of CHAR is WCHAR (wide-character), which has a 2-byte length but can be
used more broadly with its (UNICODE) UCS-2 mapping. Up to 65,535 character mappings can be
encoded with 16 bits; UNICODE does not fully utilize this range.

Type Name Bit Code table Value range HEX Value range DEC Example
CHAR character 8 ASCII 0 .. FF 0 .. 255 'P', CHAR#'P'
WCHAR Wide character 16 UCS-2 $0000 - $D7FF 0 .. 55.295 WCHAR#'Ő'
2026/01/06 13:34

STRING type variables

STRING also has two subtypes, just like CHAR. The old, “old-school” STRING, which describes the text
with ASCII characters, and WSTRING, which uses WCHAR characters with two bytes per character.
Both types are suitable for storing text, which can be extremely useful for communication, especially
in HMI connections.

For both types, the first two positions show the maximum length of the given STRING and the current
length it has been filled with. One position equals one byte for STRING, and one word for WSTRING.

In the example above, taken from the PLC status, I entered the phrase “lama!” into an 8-byte STRING
variable. The first two bytes contain the maximum length of the STRING (8) and the current length
(5), followed by the phrase as our message.

If I change the display format to hexadecimal for the characters, I see the ASCII code for each letter.

http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:string_example_1.png

Last update: 2026/01/06 13:13 automation:start http://lamaplc.com/doku.php?id=automation:start&rev=1767705197

http://lamaplc.com/ Printed on 2026/01/12 11:47

That is, the letter “l” is ASCII 16#6C, and “a” is ASCII 16#61, … For WSTRING, this assignment
appears like this:

The “$00l” content type is due to the nature of UNICODE, as “simple” characters do not fill the entire
UCS-2 space. It is clear that while we counted the positions per byte above, in this case each position
occupies a word. The first two words here also contain the maximum length of the STRING (8) and the
current length (5).

The same definition is given in hexadecimal form as follows:

If we fully fill in the UCS-2 word field, we can see what the “non-simple characters” look like. In the
first step, I entered longer codes in the word variables per character (1), and from this the “example”
WSTRING (2) was displayed:

http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:string_example_2.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:string_example_3.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:string_example_4.png

2026/01/12 11:47 11/21 Automation! v0.0

lamaPLC - http://lamaplc.com/

To sum it all up:

Type Length Character
encoding Length (characters) Example

STRING 2 byte + text CHAR, ASCII 0 .. 254 byte / character 'lamaPLC',
STRING#'lamaPLC'

WSTRING 2 word + text WCHAR, UNICODE 0 .. 16382 word /
character WSTRING#lamaPLC

More information: TIA Datatypes: S7 data types summary table

2026/01/06 13:34

TIME type variables

TIME types mainly serve for timing purposes. The most common type in programs is simple TIME,
such as in connection with IEC timings, like this:

These will be discussed later, but in the example above, the time (PT) is specified in TIME format, with
12 seconds written as t#12s.

TIME is a DINT type variable that stores time in 32 bits, measured in milliseconds. The stored value
can be positive or negative, and the rules for negative integers apply, meaning negative TIME values
cannot be represented in hexadecimal or binary form.

The same rules apply to the LTIME type, but it stores nanoseconds in an LINT variable, using 64 bits.
Interestingly, the maximum value of LTIME is 106,751 days, or about 292 years.

The S5TIME type was included among the variables for downward compatibility; it was the default
(and only) time type during the S5 PLC era.

http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:string_example_5.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:time_example_1.png

Last update: 2026/01/06 13:13 automation:start http://lamaplc.com/doku.php?id=automation:start&rev=1767705197

http://lamaplc.com/ Printed on 2026/01/12 11:47

Type Length
(form)

Value Range
HEX Value Range DEC Example

TIME 32 bit
(DINT) 0 .. 7FFF_FFFF T#-24d20h31m23s648ms ..

T#+24d20h31m23s647ms T#12s, 16#ABCD

LTIME 64 bit
(LINT)

0 .. 7FFF_FFFF_
FFFF_FFFF

LT#-106751d23h47m16s
854ms775us808ns ..
LT#+106751d23h47m16s
854ms775us807ns LT#12s

LTIME#12s,
16#ABCD

S5TIME 16 bit S5T#0H_0M_0S_0MS ..
S5T#2H_46M_30S_0MS

S5T#10s,
S5TIME#10s

More information:
TIA Datatypes: S7 data types summary table

2026/01/06 13:34

Array

An array is used to group data of the same type into blocks that can be easily addressed, i.e.,
indexed.

Arrays can be 1-, 2-, or 3-dimensional, or even 6-dimensional. The following example illustrates the
structure of 2- and 3-dimensional arrays:

The image above displays a two-dimensional array of type “byte.” The first index represents the rows,
while the second represents the columns. The value range of a byte is 0 to 255, so only values within
this range are allowed. In the example above, the program's type definition is as follows:

arry : Array[0..5, 0..2] of Byte;

The assignment is displayed in the code like this:

tomb[3, 1] := 1;

http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:dim1_en.png

2026/01/12 11:47 13/21 Automation! v0.0

lamaPLC - http://lamaplc.com/

The indexing of a three-dimensional array can be illustrated as follows:

In this case, the above assignment can be defined in the program as follows:

tomb[3, 1, 0] := 1;

The elements of the array are always homogeneous, meaning their types cannot vary. However, there
can be multiple instances of a single type within a single array if we define a Struct type as an array
element. The hydraulic motors described as an example in Struct can also be defined as an array:

In this case, I specified the type of the four-element array as “Struct”. Here, a field opens under the
name of the first array element (tomb[0]), where the Struct's elements can be defined. It is important
that the array is homogeneous, meaning the structure can only be set for the first element; the other
elements will be copies of it without the ability to modify the structure (values, of course, can
change). In the example above, the value assignment will look like this (the DB name is “motors”):

"motors".tomb[1].current := 32.2;

http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:dim2_en.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:dim3_en.png

Last update: 2026/01/06 13:13 automation:start http://lamaplc.com/doku.php?id=automation:start&rev=1767705197

http://lamaplc.com/ Printed on 2026/01/12 11:47

More information:
TIA Datatypes: S7 data types summary table

2026/01/06 13:34

Structure

A structure is a way of organizing multiple variables, often of different types, into a group. For
example, the characteristics of several devices, such as motors, can be described using the same
data groups.

Take an electric motor, for instance. Such a motor can have many technical parameters, but for
simplicity, let's narrow down the range of these parameters.

In this case, the motor has a text identifier, typically a KKS identifier in larger installations. Then there
are voltage and current measurements, an operating mode, and a status indication. These data
belong together and describe a motor. In the example above, this motor is, for example, the first
motor of a hydraulic block. In the case of multiple motors, this structure remains—only the
parameters change, as this makes it easy to handle the data uniformly:

This is what it looks like in the TIA Portal when the structures are open:

http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:structure_example_1.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:structure_example_2.png

2026/01/12 11:47 15/21 Automation! v0.0

lamaPLC - http://lamaplc.com/

The display of structures can be limited to just their names, with an arrow placed in front of the name
to close the content:

More information:
TIA Datatypes: S7 data types summary table

2026/01/06 13:34

Data block (DB)

“DB” stands for DATA_BLOCK or the German term “Datenbaustein', indicating a data area. It can
contain various data types permitted and defined by the specific PLC. The total size of all DBs is
limited by the PLC's data capacity. Since the PLC isn't optimized for storing large data, we do not save
images, music, files, or extensive text files within a DB. In the TIA-Portal, DBs are marked with a small
blue barrel icon (). The image below shows the contents of a DB, along with some settings:

http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:structure_example_3.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:structure_example_4.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:db_0.png

Last update: 2026/01/06 13:13 automation:start http://lamaplc.com/doku.php?id=automation:start&rev=1767705197

http://lamaplc.com/ Printed on 2026/01/12 11:47

The columns are as follows:

Column Desription

Name

The name of the variable within the DB. The variable names are unique, and the
DB name is displayed in the upper-left corner, in this case: K11. The variable
names are supplemented with this, e.g., “K11”.liveByte. This also means that
the DB can be copied and renamed one-for-one. That is, if this DB is copied and
renamed to, for example, “K12”, the above reference will be “K12”.liveByte.
In the case of a structure, for example, ”cbUsage“, the entire structure depth
must be defined, for example: “K11”.cbUsage.cbOpenClose.

Data type The data type. Structures and arrays must be created when defining the DB by
entering, for example, type Struct in the Data type field.

Offset The offset of the variable within the DB. This appears only for non-optimized
DBs. More details: optimized DB

Start value The starting value of the given variables, which the PLC takes on when
restarting. The default value can be overwritten in the cell.

Retain Values ​​to be retained when restarting. It can only be set for the entire DB, so it
is worth grouping the values ​​to be stored in a DB

Accessible from
HMI/OPC UA/Web
API

The value is accessible from external applications. For structures and arrays, the
setting can only be defined for the entire block. OPC access can be
enabled/disabled in the settings, see DB Properties.

Writable from
HMI/OPC UA/Web
API

The given value can be written from external applications.

Visible in HMI
engineering

The setting disables or enables the HMI integration of the variable. In addition to
disabling HMI, OPC can also be enabled, see DB Properties.

Setpoint This allows you to initialize values ​​in a data block (DB) online while the CPU is in
RUN mode.

Comment Description of the function of the field.

DB Limits

You can define up to 252 structures within a single data block for S7-1200/S7-1500, regardless

http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:db_1.png

2026/01/12 11:47 17/21 Automation! v0.0

lamaPLC - http://lamaplc.com/

of the data types used in the structures.
Maximum DB Number: The total number of data blocks is generally capped at 65,535, due to
the common use of a 16-bit address range.
Maximum DB Size (Standard - not optimized - Access): For older PLC models like S7-300/400
and for standard access DBs in newer models, each DB's size typically does not exceed 64 KB
(65,534 bytes).
Maximum DB Size (Optimized Access): In contrast, S7-1200/S7-1500 CPUs that utilize optimized
access have a much larger size limit, which varies based on the CPU's total working memory
and can reach from 1 MB up to 10 MB or more per DB.

Instant vs global DB

A global DB is a data block that programmers can freely create and populate with variables. These
variables may include default Simatic types (INT, REAL, etc.), structures, arrays, or UDTs.

Instant DBs are implicitly created when FBs are called for the first time. This call is primarily through
the instant DB. When an FB is deleted, the TIA Portal also issues a separate warning about removing
the instant DB. The contents of the instant DB automatically update with changes to the FB's variable
list. It can include default Simatic variables like INT, REAL, structures, arrays, and UDTs. If the FB calls
other embedded FBs (e.g., TON, TOF), their instant DBs are also stored here, resulting in a multi-
instant DB.

DB Properties

(right-click on the DB → Properties..)

http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:db_3.png

Last update: 2026/01/06 13:13 automation:start http://lamaplc.com/doku.php?id=automation:start&rev=1767705197

http://lamaplc.com/ Printed on 2026/01/12 11:47

Name the attribut Description

Only store in load memory

This attribute is stored on the PLC's Micro Memory Card (MMC) or
similar non-volatile storage, not in the CPU's working RAM,
making it ideal for large, infrequently used data such as recipes
or logs.
It's accessed using special instructions like READ_DBL or
WRIT_DBL to transfer data to/from working memory. This
preserves precious working memory, but requires explicit
programming to move data for active processing. The data
survives power cycles but can be lost with a factory reset.

Data block write-protected in
the device Make the entire data block read-only.

Optimized block access Optimized variable order within the DB. See below: Optimized
DB.

Data block accessible from
OPC UA

The data block can be accessed and published by OPC UA. See:
OPC UA.

Optimized DB

Simatic groups variables in the optimized DB so they occupy as little storage space as possible. This
means that it is “not visible from the outside” where a given data item is located within the storage
space, i.e., in this case, the offset is not displayed in the editor window:

On the one hand, this helps better utilize the PLC's storage space. Still, on the other hand, it makes
operations that require direct addressing (communication modules - Modbus, direct addressing, etc.)
impossible. In such cases, this option must be disabled in the settings (right-click on the DB →
Properties.. → Attributes → Optimized block access → OFF)

Tags vs DB data

There are two basic methods for storing data in PLCs (in a simplified view). One involves placing
variables in a global memory table alongside input and output variables, while the other uses data
blocks (DBs). From my experience, storing data in DBs tends to be simpler and more straightforward
for several reasons.

Function-specific data can be stored in DBs. For example, the “motor1” DB contains only data
for the 1st motor, but all of them (speed, load, temperature, on-off, errors, …)
If someone wants to define a “motor2” as well, identical to “motor1” in terms of its parameters,
they just need to copy the previous DB
Cross-reference management of data immediately points to the given DB, from which we can
immediately deduce their function
If the data is already in the instant DBs assigned to the FBs, it is easy to embed them in a
calling FB to use them as multi-instants.

http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:db_4.png

2026/01/12 11:47 19/21 Automation! v0.0

lamaPLC - http://lamaplc.com/

Typically, I don't bother defining variables within the Tags; creating them directly in the databases
suffices—though this is just my personal preference.

Storing DB records in the load memory

In PLCs, working memory is PLC-dependent and often very limited. We may have a lot of information
that does not need to be read and written cyclically. Examples include recipe data (a list of
technological components), parameter data, or database assignments that are needed only
occasionally.

In these cases, one option is to store the data not in working memory but on the SD card and in load
memory, and to transfer them only when needed using the “WRIT_DBL” and “READ_DBL” operations.

More information:
TIA Datatypes: S7 data types summary table

2026/01/06 13:34

TIA Datatypes

 List of data types used by Simatic S7. The page contains the more modern TIA
variable types as well as the earlier S7-classic types.

There are four data types in: Boolean, Text, Numeric, and Date/Time. Each data type
defines the format of information that can be entered into a data field and stored in
your database.

Datatyp Width
(bits) Range of values Examples S7-300/400 S7-1200 S7-1500

Binaries

BOOL (x)
→details

1
(S7-1500
optimized
1 Byte)

FALSE or TRUE
BOOL#0 or BOOL#1
BOOL#FALSE oder BOOL#TRUE

TRUE
BOOL#1
BOOL#TRUE

X X X

http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:db_5.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=simatic:digi.png

Last update: 2026/01/06 13:13 automation:start http://lamaplc.com/doku.php?id=automation:start&rev=1767705197

http://lamaplc.com/ Printed on 2026/01/12 11:47

Datatyp Width
(bits) Range of values Examples S7-300/400 S7-1200 S7-1500

BYTE (b)
→details 8

B#16#00 .. B#16#FF
0 .. 255
2#0 .. 2#11111111

15,
BYTE#15,
B#15

X X X

WORD (w)
→details 16

W#16#0000 .. W#16#FFFF
0 .. 65.535
B#(0, 0) .. B#(255, 255)

55555,
WORD#55555,
W#555555

X X X

DWORD (dw)
→details 32 DW#16#0000 0000 .. DW#16#FFFF FFFF

0 .. 4,294,967,295
DW#16#DEAD BEEF
B#(111, 222, 255, 200) X X X

LWORD (lw)
→details 64

LW#16#0000 0000 0000 0000 ..
LW#16#FFFF FFFF FFFF FFFF
0 .. 18.446.744.073.709.551.615

LW#16#DEAD BEEF DEAD BEEF
B#(111, 222, 255, 200, 111, 222, 255, 200) - - X

Datatyp Width
(bits) Range of values Examples S7-300/400 S7-1200 S7-1500

Integers
SINT (si)
→details 8 -128 .. 127

(hex only positive) 16#0 .. 16#7F
+42, SINT#+42
16#1A, SINT#16#2A - X X

INT (i)
→details 16 -32.768 .. 32.767

(hex only positive) 16#0 .. 16#7FFF
+1234, INT#+3221
16#1ABC X X X

DINT (di)
→details 32

-2.147.483.648 .. +2.147.483.647
(hex only positive)
16#00000000 .. 16#7FFFFFFF

123456, DINT#123.456,
16#1ABC BEEF X X X

USINT (usi)
→details 8 0 .. 255

16#00 .. 16#FF
42, USINT#42
16#FF - X X

UINT (ui)
→details 16 0 .. 65.535

16#0000 .. 16#FFFF
12.345, UINT#12345
16#BEEF - X X

UDINT (udi)
→details 32 0 .. 4.294.967.295

16#00000000 .. 16#FFFF FFFF 1.234.567.890, UDINT#1234567890 - X X

LINT (li)
→details 64 -9.223.372.036.854.775.808 ..

+9.223.372.036.854.775.807
+1.234.567.890.123.456.789,
LINT#+1.234.567.890.123.456.789 - - X

ULINT (uli)
→details 64 0 .. 18.446.744.073.709.551.615 123.456.789.012.345,

ULINT#123.456.789.012.345 - - X

Datatyp Width
(bits) Range of values Examples S7-300/400 S7-1200 S7-1500

floating point numbers

REAL ®
→details 32

-3.402823e+38 .. -1.175 495e-38
..
+1.175 495e-38 .. +3.402823e+38

0.0, REAL#0.0
1.0e-13, REAL#1.0e-13 X X X

LREAL (lr)
→details 64

-1.7976931348623158e+308 ..
-2.2250738585072014e-308
..
+2.2250738585072014e-308 ..
+1.7976931348623158e+308

0.0, LREAL#0.0 - X X

Datatyp Width
(bits) Range of values Examples S7-300/400 S7-1200 S7-1500

Times
S5TIME (s5t)
→details 16 S5T#0H_0M_0S_0MS ..

S5T#2H_46M_30S_0MS S5T#10s, S5TIME#10s X - X

TIME (t)
→details 32 T#-24d20h31m23s648ms ..

T#+24d20h31m23s647ms
T#13d14h15m16s630ms,
TIME#1d2h3m4s5ms X X X

LTIME (lt)
→details 64

LT#-106751d23h47m16s854ms775us808ns
..
LT#+106751d23h47m16s854ms775us807ns

LT#1000d10h15m24s130ms152us15ns,
LTIME#200d2h2m1s8ms652us315ns - - X

Timer operations: IEC timers, TON (Generate on-delay), TOF (Generate off-delay), TP (Generate pulse), TONR (Time accumulator)

Datatyp Width
(bits) Range of values Examples S7-300/400 S7-1200 S7-1500

Counters
CHAR
→details 8 ASCII character set 'A', CHAR#'A' X X X

WCHAR (wc)
→details 16 Unicode character set WCHAR#'A' - X X

STRING (s)
→details

n+2
(Byte) 0 .. 254 characters (n) 'Name', STRING#'lamaPLC' X X X

WSTRING (ws)
→details

n+2
(Word) 0 .. 16382 characters (n) WSTRING#'lamaPLC' - X X

Counter operations: CTU (count up), CTD (count down), CTUD (count up and down)

Datatyp Width
(bits) Range of values Examples S7-300/400 S7-1200 S7-1500

Date & time
DATE (d)
→details 16 D#1990-01-01 .. D#2168-12-31 D#2020-08-14, DATE#2020-08-14 X X X

TOD (tod)
(TIME_OF_DAY)
→details

32 TOD#00:00:00.000 .. TOD#23:59:59.999 TOD#11:22:33.444,
TIME_OF_DAY#11:22:33.444 X X X

http://lamaplc.com/doku.php?id=simatic:scl_commands_timer_counter#ctu
http://lamaplc.com/doku.php?id=simatic:scl_commands_timer_counter#ctd
http://lamaplc.com/doku.php?id=simatic:scl_commands_timer_counter#ctud

2026/01/12 11:47 21/21 Automation! v0.0

lamaPLC - http://lamaplc.com/

Datatyp Width
(bits) Range of values Examples S7-300/400 S7-1200 S7-1500

LTOD (ltod)
(LTIME_OF_DAY)
→details

64 LTOD#00:00:00.000000000 ..
LTOD#23:59:59.999999999

LTOD#11:22:33.444_555_111,
LTIME_OF_DAY#11:22:33.444_555_111 - - X

DT (dt)
(DATE_AND_TIME)
→details

64 Min.: DT#1990-01-01-0:0:0
Max.: DT#2089-12-31-23:59:59.999

DT#2020-08-14-2:44:33.111,
DATE_AND_TIME#2020-08-14-11:22:33.444 X - X

LDT (ldt)
(L_DATE_AND_TIME)
→details

64

Min.: LDT#1970-01-01-0:0:0.000000000,
16#0
Max.:
LDT#2262-04-11-23:47:16.854775807,
16#7FFF_FFFF_FFFF_FFFF

LDT#2020-08-14-1:2:3.4 - - X

DTL (dtl)
→details 96 Min.: DTL#1970-01-01-00:00:00.0

Max.: DTL#2554-12-31-23:59:59.999999999 DTL#2020-08-14-10:12:13.23 - X X

Datatyp Width
(bits) Range of values Examples S7-300/400 S7-1200 S7-1500

Pointers

POINTER (p)
→details 48

Symbolic: “DB”.“Tag”
Absolute:
P#10.0
P#DB4.DBX3.2

X - X

ANY (any)
→details 80

Symbolic:
“DB”.StructVariable.firstComponent
Absolut: P#DB11.DBX12.0 INT 3
P#M20.0 BYTE 10

X - X

VARIANT (var)
→details 0

Symbolic:
“Data_TIA_Portal”.
StructVariable.firstComponent
Absolute: %MW10
P#DB10.DBX10.0 INT 12

- X X

BLOCK_FB 0 - X - X
BLOCK_FC 0 - X - X
BLOCK_DB 0 - X - -
BLOCK_SDB 0 - X - -
VOID 0 - X X X
PLC_DATA_TYPE 0 - X X X

2026/01/06 13:34

Important and frequently used procedures and functions

From:
http://lamaplc.com/ - lamaPLC

Permanent link:
http://lamaplc.com/doku.php?id=automation:start&rev=1767705197

Last update: 2026/01/06 13:13

http://lamaplc.com/
http://lamaplc.com/doku.php?id=automation:start&rev=1767705197

	Automation! v0.0
	Prolog
	Simatic variable types
	Bit & Byte
	DEAD_BEEF

	BYTE – WORD type variables
	INT type variables
	UINT type variables
	REAL type variables
	CHAR type variables
	STRING type variables
	TIME type variables
	Array
	Structure
	Data block (DB)
	DB Limits
	Instant vs global DB
	DB Properties
	Optimized DB
	Tags vs DB data
	Storing DB records in the load memory

	TIA Datatypes

	Important and frequently used procedures and functions

