2026/01/12 11:47 1/21 Automation! v0.0

Automation! v0.0

Prolog

My name is Sandor Vamos. | was born in Hungary, have lived in Germany
for approximately 20 years, and now hold German citizenship. | speak
Hungarian, German, and English. | am over 50 years old and have about X BERR
25 years of experience in programming and designing industrial systems. | = | R
mainly design with the market leader in Europe, Simatic systems, but | = j.';]:'!;"tl".l" .'-"""'L"‘
have also worked on many other systems (AB Rockwell, Bosch, Wago, a

Codesys, Mitsubishi, ...).

At first, | worked on production lines at Bosch; later, | founded my own company and worked in power
plant technology. The Budapest (Radkospalota) Waste Incineration Plant (4 boilers, turbine, district
heating) has been operating with my software for more than 20 years.

In 2006, my family and | moved to Germany, where | initially worked on programming trains; for
example, | wrote the door control software module for the ICE4 (intercity train). For several years, |
have been working on shore power supply for container vessels and cruise ships. In this area, my
current references include the Hamburg CTB, the Toll Ports of Melbourne and Burnie, and the Thialf
and Sleipnir ships in Rotterdam.

In addition to Simatic systems, | also work extensively with Arduino and ESP32 microcontrollers. | use
these primarily for loT projects, often as an economical complement to Simatic systems. Simatic is an
expensive system, and in many cases it is not cost-effective to use; in those cases, its “little brother”,
Arduino, comes in handy. In addition to control, | implement visualization (SCADA/HMI), typically with
WinCC for Simatic systems. For data collection and exceptional communication, | develop IPC
solutions in LabVIEW, which, of course, connect to Simatic and Arduino.

| use a wide range of industrial communication systems to service and communicate with the
systems: ProfiNet, ProfiBus, (Industrial) Ethernet protocols, Modbus, IEC61850, ... - check out my site.

The idea for the online book stems from the fact that | have many notes on “real” programming, i.e.,
the programming | use in practice. These are tricks and procedures that official books rarely present,
or present with a significantly different emphasis. | felt that, amid the flood of technical books, a
description focused on the practical application of PLCs might have its place.

The book Automation! is an ever-expanding online documentation project based primarily on my
experiences. | highlight the knowledge | consider essential for programming. | also adjust the
language so it reads as if | were explaining to a friend which things are unimportant and which are
essential. The online documentation will also be available for download as a book, but | will provide it
with a version number, precisely because of the continuous expansion. For now, the version starts
with 0, since | have only just started writing this.

Sandor Vamos: lamaPLC.com

To quickly review the content, use the “Table of contents” function in the

© upper-right corner i (on PC).

lamaPLC - http://lamaplc.com/


http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:simatic_s7_1500_f_ctb.png
https://lamaplc.com/
https://lamaplc.com/doku.php?id=impressum

Last update: 2026/01/06 13:13 automation:start http://lamaplc.com/doku.php?id=automation:start&rev=1767705197

You can save the entire page content as a PDF by clicking the PDF icon in the
right menu (Export to PDF).

A few important notes regarding the document (Automation!):

e The document (Automation!) is freely available, but | hold the rights to publish it. Redistribution
- even partially - requires my approval.

e The document's content reflects my personal judgment. Clearly, | cannot provide a
comprehensive and detailed Simatic documentation, partly due to length constraints.

e The example programmes are written in SCL because it is the language | use for programming.

e Although | have taken great care, there might still be errors in this document. If you find any,
please let me know at: info at lamaplc.com.

2026/01/06 13:34

Simatic variable types
Bit & Byte

The Bit is the simplest form; it's a signal that can be true or false, with its official English
equivalents being “TRUE” or “FALSE,” or even simply 0 or 1. There is no 2 anymore because

two is represented by 10 according to the rules of the binary number system, which in this b
case is not ten but one zero. To clearly distinguish this, we write numbers in the decimal

number system “just like that,” for example, 10. If this is a number in the binary number

system, then we denote it as 2#10.

The decimal number system stems from the fact that we have ten fingers and, historically, used them
to perform all our calculations. If we had, say, three fingers on each hand, meaning six in total, then
we would be using the six-number system now. Computing is based on the above yes-or-no logic, i.e.,
the binary number system, which is why we often use the hexadecimal number system. I'll talk about
that later. Let's first look at the binary number system through a byte to see how it works.

A byte is a variable type consisting of 8 bits. The value stored in it must be somewhere between 0 and
255, depending on the bit positions. The example below may help you understand this a little:

http://lamaplc.com/ Printed on 2026/01/12 11:47


http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:10.png

2026/01/12 11:47 3/21 Automation! v0.0

position value calculation
O ? 128 > 0
|1 i B4 - B4
= O z X —» ]
1 ? 16 - 16
O 2 g (3 o
— |1 2 4 — - 4
> |1 2 2 > 2

O ? 1 3 0 _

3

Example: 0 10 1,0 1 1 n| > 8 example value
Bit positions: 7/ 6/5|4/3 2 10
Byte

Let's take the bit sequence “01010110” as an example, which fills the above byte. The bits of a byte
are always numbered from right to left; position 0 is always on the right. Each position corresponds to
a given power of the binary number system; position 4 corresponds to 24 = 16. If there is a 0 in this
position in the example, then it does not “count”; if there is a one, then its value “counts”, and as can
be seen in the rows marked in green, the sum of the “counting” rows gives the current decimal value
of the byte, 86. That is, 2#01010110 = 86.

Therefore, the byte reaches its maximum value when all bits are set to 1. It can be calculated that
2#11111111 = 255. The byte data type holds values between 0 and 255.

In computing, we use the base-10 number system, as well as the binary and base-16 number
systems. The values described in it are called hexadecimal numbers and are denoted by the prefix
“16#" or sometimes “hex#"”. Sometimes the hexadecimal number system is simply the hash, like
this: “#ABCD"”. The hexadecimal number system changes order of magnitude at 16, meaning that a
position can contain a value between 0 and 15. This can be very confusing in the base 10 number
system, so the two-digit positions are denoted by letters:

10 = 16#A
11 = 16#B
12 = 16#C
13 = 16#D
14 = 16#E
15 = 16#F

If a byte reaches its maximum value, meaning every bit is set to “1”, then: 2#11111111 = 255 =
16#FF

If we calculate: F, i.e., “15"” * 16 + “15” = 255

In some ways, this can make our lives easier, because if we see a value of “16#FF” somewhere, or a
longer series of these, for example “16#FFFF_FFFF”, then we can suspect that we have reached the
maximum value of one of the variable types. | would also like to mention the 8-bit, i.e., octal number

lamaPLC - http://lamaplc.com/


http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:byte_pos_en.png

Last update: 2026/01/06 13:13 automation:start http://lamaplc.com/doku.php?id=automation:start&rev=1767705197

system, it sometimes still occurs here and there, for example, in the case of numerical symbols, but
only rarely, we don't really use it.

DEAD_BEEF

Just as “FF” is likely to represent the maximum of a given variable type, dead beef is a test value
designation, a play on letters. The letters of the hexadecimal number system are a, b, ¢, d, e, f.
#dead_beef contains all of them except ¢, so it is helpful for testing. The Windows calculator,
switched to programmer mode, is very helpful for hex-dec-bin conversions. From this, it turns out that
the value of 16#dead_beef is:

DEAD BEEF

| HEX  DEAD BEEF
DEC  3.735.928.559
OCT 33653337357
BIN 110111101010 1101 1011 1110 1110 1111

2026/01/06 15:01

@ More information: TIA Datatypes: S7 data types summary table

2026/01/06 13:34

BYTE - WORD type variables

There are plenty of variables in the world of automation. They differ in scope (size) and internal
structure depending on their use.

The simplest variable types have no internal structure, i.e., they can describe ones and zeros in
different scopes:

http://lamaplc.com/ Printed on 2026/01/12 11:47


http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:dead_beef.png

2026/01/12 11:47

5/21

Automation! v0.0

£ 2 z 1 a

I 2 | 12 12 11 g a E) 7 & 5 £ 2 2 1 a

3| 2|28 27 X\ I M 23| 2|2 N0 |19 18 171 15|18 12 12 10|10 3 -} 7 8 504 2 2 1 a
[ 3. byte | 2. byte | 1. byte | 0. byte |

Example in
hexadecimal

Example in binear

Byte (8 bit)

Word (16 bit)

DwWord (32 bit)

Byte positions

The longest 64-bit LWord didn't fit in the example above, but | think it's relatively easy to imagine.
The byte positions are on the bottom row. If everything works well, this is the byte order for the
longer variable types, but sometimes confusion arises in the matrix, and this order gets “tangled”.

This most often happens when we try to transfer long variables via communication to other systems,
such as HML. In such cases, it is definitely worth testing the transfer, for example, with the above
trick, because when the specified #deadbeef is on one side. If the destination side shows #beefdead
or #efbeadde, we can rightly suspect a conversion discrepancy, which is easiest to correct on the
starting side by swapping the structures.

The following types are unsigned (UNSIGNED), meaning their minimum value is always zero.

Let's review the basic variable types and their features:

Type |[Bit|Min.|Max. Value range HEX Value range DEC

BYTE (8 |0 [2°-1 |0..FF 0.. 255

WORD (16 [0  [2'°-1 |0 .. FFFF 0..65.535

DWORD|(32 |0  [2*°-1 |0 .. FFFF_FFFF 0..4.294.967.295

LWORD |64 |0  |2*-1 |0 .. FFFF_FFFF_FFFF_FFFF|0 .. 18.446.744.073.709.551.615

Any rules do not bind the contents of the above variables; they actually only contain some bit
combinations. They can't have negative values by default; INT type variables are used for that.

@ More information: TIA Datatypes: S7 data types summary table

2026/01/06 13:34

INT type variables

In the case of the INT, which is the integer type, the definition becomes slightly more complex in
terms of formal constraints because of the introduction of the sign bit. This means that the highest

lamaPLC - http://lamaplc.com/


http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:byte_word_dword_en.png

Last update: 2026/01/06 13:13 automation:start http://lamaplc.com/doku.php?id=automation:start&rev=1767705197

value of the variable's position, the first bit on the left, will represent the sign: if it is “1”, the variable
indicates a negative number, whereas if it is “0”, it indicates a positive one.

Really, just for completeness, in the case of negative numbers, the program uses
the so-called “two's complement” representation. That is, it first negates all the
bits of the numerical value, i.e., it converts 0 to 1 and vice versa, and then adds 1

& to the resulting value. This conversion means that the negative value cannot be
read directly from the bit combination unless the conversion is performed again
in the opposite direction:

Two's complement method by INT type

SINT1 —-1 SINT 100 = -100

|DDDDIDDD1| |D11D|D1DD|

l First step: negate all bit positions

|1111|111D| |1DD1|1D11|

l Second step: +1

|1111|1111| |1nn1|11nn|

As a result, Simatic only uses binary and hexadecimal notations for positive numbers, meaning that
negative hexadecimal or binary values will not show the actual numerical value but instead the value
based on the bit pattern. For example, A, which equals ten, will still be 16#A, but -A, which equals
-10, will be displayed in WORD format as FFF6. This misunderstanding is resolved by the rule that
hexadecimal and binary signals cannot have negative values in Simatic:

2 #intVariable := 128;

j #intVariakble := -128&;

? #intVariable 1= l1G6#A%;

i #intVarisble := laf-LA;

;? #$intVariakble := 2$00011111;
:5 #intVariakle := 24-00011111;

In the above example, | tried to assign a value to an INT variable. It is clear that the compiler
accepted the negative value when specified in decimal, but not when specified in hexadecimal or
binary. Let's look at the contents of the INT variable in several forms:

http://lamaplc.com/ Printed on 2026/01/12 11:47


http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:two_complement_en.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:int_neg_hex.png

2026/01/12 11:47 7/21 Automation! v0.0

DEC|SINT HEX (8-bit)[SINT BIN (8-bit)|INT HEX (16-bit)|INT BIN (16-bit)

12 |16#7F 2#0111 1111  |16#007F 2#0000 0000 0111 1111
1 [16#01 2#0000 0001  |16#0001 2#0000_0000_0000 0001
1 |16#FF 2#1111 1111  |16#FFFF 2#1111 1111 1111 1111
-85 |16#AB 2#1010 1011  |16#FFAB 2#1111 1111 1010 1011
-128|16#80 2#1000 0000  |16#FF80 2#1111 1111 1000 0000

The INT type is optimized for decimal handling; it can also be used in
o hexadecimal and binary forms, but in these cases, you need to pay close
attention to the type's special characteristics.

Compared to byte and word type variables, this means that the maximum value of these variables is
almost halved when dealing with decimal numbers. However, roughly the same magnitude can be
used in the negative direction. For example, a one-byte-long SINT type will operate within the range
-128 to 127, unlike the “plain” BYTE range of 0 to 255.

The letter “S” in the SINT definition stands for the word “short”, as the INT type is the default integer
(16 bits), while SINT is short, with half the bit length—8 bits. The letter “D” represents the word
“double,” with its 32 bits.

Type/Name Bit|Minimum|/Maximum \I-Ilzl)l(ji rangé  lyalue range DEC
short 7 7
SINT integer 8 |-(2) 2'-1 0. 7F -128 .. 127
INT |integer 16 |-(2") 2°-1 0.. 7FFF -32.768 .. 32.767
DINT ;jnot:tg)leer 32 |-(2*) 271 0 .. 7FFF_FFFF |-2.147.483.648 .. +2.147.483.647
double
63 63 0 .. 7FFF_FFFF_ |-9.223.372.036.854.775.808 ..
LINT :ﬁ?egger 641-(2%) 121 FFFF_FFFF +9.223.372.036.854.775.807

* Negative number ranges are not supported in hexadecimal and binary formats.

UINT type variables

The unsigned UINT type (the letter U stands for unsigned) removes the hassle of dealing with
negative values from the world of the INT type. It corresponds to basic types like BYTE, WORD, etc., in
terms of value range, but with INT it indicates that we want to treat the contents of the variables as
numeric values.

Value range

Type |Name Bit Minimum|/Maximum HEX * Value range DEC
usINT uUnsigned short g, 28 0. FF 0. 255
integer
uINT |Unsigned 16 |0 216 0 .. FFFF 0..65.535
integer

lamaPLC - http://lamaplc.com/



Last update: 2026/01/06 13:13 automation:start http://lamaplc.com/doku.php?id=automation:start&rev=1767705197

Value range

Type |[Name BitMinimum| Maximum HEX *

Value range DEC

Unsigned double
integer
Unsigned long 64 0 .. FFFF_FFFF_
integer o4 0 2 FFFF_FFFF

UDINT 3210 2% 0..FFFF_FFFF |0 .. 4.294.967.295

ULINT 0..18.446.744.073.709.551.615

* Negative number ranges are not supported in hexadecimal and binary formats.
@ More information: TIA Datatypes: S7 data types summary table

2026/01/06 13:34
REAL type variables
REAL type variables (REAL, LREAL) are defined by the IEEE 754 (IEEE 754/1985 Floating Point

Number Format) standard. This is a fairly complex type that, despite its intimidating complexity, is
well-suited for storing fractional numbers.

If you are interested in the definition of the type, please look it up on Wikipedia, for example, because
I can't; | can't explain how this type works simply.

REAL (32 bit) :

LREAL (64 bit) : M 8 bit: exponent ‘ 23 bit: mantissa ‘

+

11 bit: exponent ‘ 52 bit: mantissa l

A A A R R R N R ] & p E|5 # B|lz|a o e|s|r s 85|48 2 o u 8 &

1 bit: sign

e Sign: The sign is determined by one bit (red color). This bit can be either “0” (positive) or “1”
(negative).

e Exponent: The exponent ranges from 128 to -127.

e Mantissa: Only the mantissa is a fractional part of the overall value.

Type |Bit|Value range DEC
REAL |32 |-3.402823e+38 .. -1.175 495e-38 .. +1.175 495e-38 .. +3.402823e+38

LREAL 64 -1.7976931348623158e+308 .. -2.2250738585072014e-308 ..
+2.2250738585072014e-308 .. +1.7976931348623158e+308

In practice, REAL is suitable for handling fractions and large values. Due to its nature, it is mainly used
for processing and evaluating measurements. It is important to note that, because of its structure, if a
very large value is stored in it and we try to increase or decrease it by, say, a very small value,
nothing will happen; the stored value will not change. The type is inherently not suitable for handling
exact counters, since it handles numbers “in order of magnitude.” INT is more appropriate for
counting functions.

@ More information: TIA Datatypes: S7 data types summary table

http://lamaplc.com/ Printed on 2026/01/12 11:47



http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:real_en.png

2026/01/12 11:47 9/21 Automation! v0.0
s o

2026/01/06 13:34

CHAR type variables

CHAR (character) types are suitable for storing a single letter each. The original CHAR uses codes
from the ancient ASCII character mapping table. This table contains a mix of 255 different characters
(letters, numbers, control characters, graphic symbols). Its advantage is that it requires only 1 byte,
but its disadvantage is that the character set is quite limited; for example, Hungarian or Chinese
accented characters are mostly excluded.

The extended version of CHAR is WCHAR (wide-character), which has a 2-byte length but can be
used more broadly with its (UNICODE) UCS-2 mapping. Up to 65,535 character mappings can be
encoded with 16 bits; UNICODE does not fully utilize this range.

Type |Name Bit/Code table Value range HEX Value range DEC Example
CHAR [character 8 |ASClI 0. FF 0..255 'P', CHAR#'P'
WCHAR Wide character|16 |UCS-2 $0000 - $D7FF 0..55.295 WCHAR#'0

2026/01/06 13:34

STRING type variables

STRING also has two subtypes, just like CHAR. The old, “old-school” STRING, which describes the text
with ASCIl characters, and WSTRING, which uses WCHAR characters with two bytes per character.
Both types are suitable for storing text, which can be extremely useful for communication, especially
in HMI connections.

For both types, the first two positions show the maximum length of the given STRING and the current
length it has been filled with. One position equals one byte for STRING, and one word for WSTRING.

Mame Address Display format Maonitor value
"example®.t5tring P#DES DEX0D.0 String ‘lamal’
%wDES.DEEO Hex 16#08
%DES.DEE1 Hex 16805
“example®.t5tring[1] %DE9.DBE2 Character I
“example®.t5tring[2] %DB9.0DBE3 Character ‘a’
“example® t5tring[3] %DE9.DEE4 Character ‘m'
“example®.t5tring[4] %DEBE9.DBES Character ‘a’
“example®.t5tring[5] %DE9.DBEG Character T
“example® . t5tring[6] %DE9.DBET Character ‘$00'

In the example above, taken from the PLC status, | entered the phrase “lama!” into an 8-byte STRING
variable. The first two bytes contain the maximum length of the STRING (8) and the current length
(5), followed by the phrase as our message.

If | change the display format to hexadecimal for the characters, | see the ASCII code for each letter.

lamaPLC - http://lamaplc.com/


http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:string_example_1.png

Last update: 2026/01/06 13:13

automation:start http://lamaplc.com/doku.php?id=automation:start&rev=1767705197

Mame

“example” t5tring

“example®.t5tring[1]
“example® . t5tring[2]
“example®.t5tring[3]
“example® t5tring[4]
“example®.t5tring[5]
“example®.t5tring[6]

Address Display format
P#DES.DEX0.0 String
“%=DES.DEEO Hex

%WDES . DEE Hex

%=DES. DEBEZ2 Hex

%DES DEEZ Hex

%DES. DEE4 Hex
%=DES.DEES Hex
%DES.DEEG Hex

%DES. DEEY Hex

Maonitor value
‘larnal’
16808
168%05
1686C
16#61
16%60D
16#61
16821
16500

That is, the letter “I” is ASCIl 16#6C, and “a” is ASCIl 16#61, ... For WSTRING, this assignment

appears like this:

Mame

"example”®.t5tring

“example®.t5tring[1]
“example®.t5tring[2]
“example® t5tring[3]
“example®.t5tring[4]
“example” t5tring[5]

“example®.t5tring[6]

Address Display format
P#DEZ.DEX0.0 Unicode string
“%DES. DEWO Hex
%DBES9.DEW2 Hex

%DB9 DBV Character
%DB9.DEWS Character
%DBES.DEWS Character
%DB9.DEWI1D Character
%DB9.DBW12 Character
%DEB2.DEW 4 Character

Monitor value
WSTRING# lamal’
1650008
1680005

‘soal

'$00a"

‘$00m'

‘$00a"

‘001

‘500500

The “$00/” content type is due to the nature of UNICODE, as “simple” characters do not fill the entire
UCS-2 space. It is clear that while we counted the positions per byte above, in this case each position
occupies a word. The first two words here also contain the maximum length of the STRING (8) and the

current length (5).

The same definition is given in hexadecimal form as follows:

Mame

“example” t5tring

“example®.t5tring[1]
“example® . t5tring[2]
“example®.t5tring[3]
“example® t5tring[4]
“example®.t5tring[5]
“example®.t5tring[6]

Address Display format
P#DB9.DBX0.0 Unicode string
%DES.DEWD Hex
wWDES.DEWZ Hex
WDES.DEWV Hex
%DES.DEWS Hex
%wDBS.DEWE Hex
%DES.DEWIO0 Hex
%=DEBES.DEW1Z Hex
wDES.DEWT4 Hex

Maonitor value
WETRINGE larmal’
16#0008
1650005
165006C
16#0061
1650060
16#0061
1650021
1650000

If we fully fill in the UCS-2 word field, we can see what the “non-simple characters” look like. In the
first step, | entered longer codes in the word variables per character (1), and from this the “example”
WSTRING (2) was displayed:

http://lamaplc.com/

Printed on 2026/01/12 11:47


http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:string_example_2.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:string_example_3.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:string_example_4.png

2026/01/12 11:47 11/21 Automation! v0.0

Name Address Display format i Modify value
*example” t5tring [)| PeDB9.DBXD.O Unicode string WSTRINGS '™ < 2{ phIE)

%=DE9.DEWD Hex 1620008 4
%DB9.DBW2 Hex 1620005
*example” tString[1] %DB9.DBW Hex 1621111 1681111
*example® t5tring[2] %DB9.0BWS Hex 1682222 16#2222
*example® t5tring[3] %DES.0EWS Hex 1683333 16#3333
“example” t5tring[4] %DB9.DBWID Hex 1654444 1654444
“example”.tString[5] %DE9.CEWI2 Hex 1685555 1625555
v
WSTRING#'= - 2{ j&1%"
To sum it all up:
Character
Type Length . Length (characters) Example
encoding

'lamaPLC',

STRING |2 byte + text |CHAR, ASCII 0 .. 254 byte / character STRING#'lamaPLC’

0..16382 word /

WSTRING|2 word + text|WCHAR, UNICODE
character

WSTRING#lamaPLC

0 More information: TIA Datatypes: S7 data types summary table

2026/01/06 13:34

TIME type variables

TIME types mainly serve for timing purposes. The most common type in programs is simple TIME,
such as in connection with IEC timings, like this:

10 PT:=t#l23);
11

9 T#Ttimer(lﬂ:#sta:t, #3tart FALSE

These will be discussed later, but in the example above, the time (PT) is specified in TIME format, with
12 seconds written as t#12s.

TIME is a DINT type variable that stores time in 32 bits, measured in milliseconds. The stored value
can be positive or negative, and the rules for negative integers apply, meaning negative TIME values
cannot be represented in hexadecimal or binary form.

The same rules apply to the LTIME type, but it stores nanoseconds in an LINT variable, using 64 bits.
Interestingly, the maximum value of LTIME is 106,751 days, or about 292 years.

The S5TIME type was included among the variables for downward compatibility; it was the default
(and only) time type during the S5 PLC era.

lamaPLC - http://lamaplc.com/


http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:string_example_5.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:time_example_1.png

Last update: 2026/01/06 13:13 automation:start http://lamaplc.com/doku.php?id=automation:start&rev=1767705197

Length Value Range
Type (form) HEX Value Range DEC Example
32 bit T#-24d20h31m23s648ms ..
TIME (DINT) 0 .. 7FFF_FFFF T#+24d20h31m23s647ms T#12s, 16#ABCD
LT#-106751d23h47m16s
LTIME 64 bit 0 .. 7FFF_FFFF_ |854ms775us808ns .. LTIME#12s,
(LINT) FFFF_FFFF LT#+106751d23h47m16s 16#ABCD
854ms775us807ns LT#12s
. S5T#0H_OM_0S_OMS .. S5T#10s,
SSTIME 16 bit S5T#2H _46M_30S_OMS SSTIME#10s

@ More information:
TIA Datatypes: S7 data types summary table

2026/01/06 13:34

Array

An array is used to group data of the same type into blocks that can be easily addressed, i.e.,
indexed.

Arrays can be 1-, 2-, or 3-dimensional, or even 6-dimensional. The following example illustrates the
structure of 2- and 3-dimensional arrays:

] 1 2 3 4 5
0 16 233 5 14 111 132
1 7 34 123 1 34 55
2 54 78 23 88 56 200

The image above displays a two-dimensional array of type “byte.” The first index represents the rows,
while the second represents the columns. The value range of a byte is 0 to 255, so only values within
this range are allowed. In the example above, the program's type definition is as follows:

arry : Array[0..5, 0..2] of Byte;

The assignment is displayed in the code like this:

tomb[3, 1] := 1;

http://lamaplc.com/ Printed on 2026/01/12 11:47



http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:dim1_en.png

2026/01/12 11:47

13/21

Automation! v0.0

The indexing of a three-dimensional array can be illustrated as follows:

16

54

233

34

78

123

23

14

88

111

34

56

132

55

200

In this case, the above assignment can be defined in the program as follows:

tomb[3,

1, 0]

1;

The elements of the array are always homogeneous, meaning their types cannot vary. However, there
can be multiple instances of a single type within a single array if we define a Struct type as an array
element. The hydraulic motors described as an example in Struct can also be defined as an array:

motors

Marne

e
<

L
L
-
-
| |
[ ]
-

cheddbbbotatbbblse

tomb

tomb[0]
motorid
voltage
current
mode
status
lecal
tomb[1]
motorid
voltage
current
mode
status
lecal
tomb([2]
tomb[3]
tomb[4]

Data type
Array[0..4] of Struct
Struct
string
Real

Real

Byte

Byte

Byte
Struct
String
Real

Real

Byte

Byte

Byte
Struct
Struct

Struct

Start value

1 4LACOT

402.0
5.2

3

1

1

Meonitor value

Comment

1 4LACO1 Hydraulicpumpe

1 4LACO1 CEQOT (V)

1 4LACO1 CEQO2Z (A)

1 4LACO1 CEQO3 (On, Off, Auto)

1 4LACO1 CEOO4 (Run, Stop, Error)
1 4LACO1 CEQOS (remote, local)

In this case, | specified the type of the four-element array as “Struct”. Here, a field opens under the
name of the first array element (tomb[0]), where the Struct's elements can be defined. It is important
that the array is homogeneous, meaning the structure can only be set for the first element; the other
elements will be copies of it without the ability to modify the structure (values, of course, can
change). In the example above, the value assignment will look like this (the DB name is “motors”):

"motors".tomb[1l].current

32.2;

lamaPLC - http://lamaplc.com/


http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:dim2_en.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:dim3_en.png

Last update: 2026/01/06 13:13 automation:start http://lamaplc.com/doku.php?id=automation:start&rev=1767705197

0 More information:
TIA Datatypes: S7 data types summary table

2026/01/06 13:34
Structure
A structure is a way of organizing multiple variables, often of different types, into a group. For

example, the characteristics of several devices, such as motors, can be described using the same
data groups.

Take an electric motor, for instance. Such a motor can have many technical parameters, but for
simplicity, let's narrow down the range of these parameters.

~motorld” : string
wvoltage” : real
LCurrent” : real
.mode” : byte
LStatus” : byte

«local” : byte

In this case, the motor has a text identifier, typically a KKS identifier in larger installations. Then there
are voltage and current measurements, an operating mode, and a status indication. These data
belong together and describe a motor. In the example above, this motor is, for example, the first
motor of a hydraulic block. In the case of multiple motors, this structure remains—only the
parameters change, as this makes it easy to handle the data uniformly:

[ .hydraulicmotor_1* : struct | .hydraulicmotor_2* | ,hydraulicmotor_3* |, hydraulicmotor_4"

~voltage” : real
This is what it looks like in the TIA Portal when the structures are open:

Lcurrent” : real
~mode” : byte
JStatus” : byte
<local” : byte

http://lamaplc.com/ Printed on 2026/01/12 11:47


http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:structure_example_1.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:structure_example_2.png

2026/01/12 11:47

15/21

Automation! v0.0

motors
MName
<0 T Stabg
= T hydreulichMoter_1
Lm] = motorid
Em| = valtage
a L cument
< - mode
i = SEatuS
-] - local
A= T hydreulichotor_2
+ L matarid
0 = voltage
< = cument
0 L mode
< L 45T
< = lacal
. - h;,drbl.llckt‘.bﬁr_i
-] [ ] matord
g = voltage
Enl - rurrsnt

Data type

Struct
Stmng
Feal
Feal
Byt
Byt
Byte
Cruct
cin ng
Real
Real
Byt
Byt
Byt
Struct
Stnng
Real
Beal

Start value

1 4LACOT”

4020
5.2

1 4LACO2'

400.3
0.0
3

-
1

1 ALACOE!

402.0
fnn

Montor value

"1 4LACOT"
4020

5.2

16803
16201
16201

1 4LACO2"
4003

0.0

16803
16802
16201

1 4LACOZ

402.0
nn

Comment

1 4LACOT Hydraulicpumpe

1 4LACDY CEODT (V)

1 4LACOT CEOO2 (A)

1 4LACOT CEOO3 (On, OF, Auta)

1 4LACOY CEOOS (Run, Stop, Emor)
1 4LACOY CEOOS (remote, locall

1 4LACOZ Hydraulicpumpe

1 4LACO2 CEODT (V)

1 4LACO2 CEOOZ (A)

1 4LACO2 CEOO3 (On, OF Auta)

1 &LACOZ CEQOQs (Rum, Stop, Ermor)
1 4LACOZ CEQQS (remote, hocal)

1 4LACO3 Hydraulcpurmpe

1 4LACOS CEOO1 (V)
1 41 AP FEAMT (A

The display of structures can be limited to just their names, with an arrow placed in front of the name

to close the content:

:

Name

T Static

=} hydraulichMoter_1
b hydraulichotor_2

= b hydraulicMoter_3
(] h',draullc!.btpr_d

doodo

6 More information:
TIA Datatypes: S7 data types summary table

2026/01/06 13:34

Data block (DB)

Data type

Sonect
Strect
Strsct

Struct

Start value

Maonitor value

Comment

“DB” stands for DATA BLOCK or the German term “Datenbaustein’, indicating a data area. It can
contain various data types permitted and defined by the specific PLC. The total size of all DBs is
limited by the PLC's data capacity. Since the PLC isn't optimized for storing large data, we do not save
images, music, files, or extensive text files within a DB. In the TIA-Portal, DBs are marked with a small

blue barrel icon ( ®). The image below shows the contents of a DB, along with some settings:

lamaPLC - http://lamaplc.com/


http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:structure_example_3.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:structure_example_4.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:db_0.png

Last update: 2026/01/06 13:13

automation:start http://lamaplc.com/doku.php?id=automation:start&rev=1767705197

oo

= _> L. 2 = Keep actualvalues |gig | Snapshot "3} 53‘, Copysnapshots to startvalues g - Load startvalues as actual values W), B
K11
Name Data type | Offset Start value Retain | Accessible from . | Writa... | Visible in HM.. | Setpoint Supervis... Comment

1 4@ > static

2 |4qim= liveByte Byte 0.0 £ =] =] =] =] (] liveBeat byte to Siprotec

3 aw. com Int 2.0 o [ [ = =) A commands: reset, openCh, closeCh, openGn...

4 41 = fbErrar Int 4.0 0 D E E E D FB intern error

5 |41m= cbCommeError Bool 6.0 false =] =] =] =] (] SIPROTEC communication error

6 <= cbSumError Bool 6.1 false D E E E D CB summary error

7 4= cbinGndPos Bool 62 false D E E E D L5S in Ground position

8 |qim= ready Bool 63 false =] =] =] =] (] Field readyto start

S = ok Bool 6.4 false D E E E D Field on & working

10 g1 = cbstate Byte 7.0 BEL D @ @ @ D Ox: gray. 1x white, 2xred, 3x: yellow, 4x: gr...

11 < = trip Bool 8.0 false =) =] =] =] = 1: trip

12 | = liveBeat Bool 8.1 false D E E E D liveBeat from Siprotec

15 41 = simuError Int 100 0 D @ @ @ D 0: no error, 1: illegalMoveChb, 2: illegaMoveR..

14 @ = » conf Struct 120 =) =] =] =] configuration for CB

15 <@ = » inputHW Struct 200 D E E E hardware input signals

16 @] = ) outputHW Struct 220 D @ E @ hardware output signals

17 @ = » wdWarnings Struct 240 =) =] =] =] active Warning Watchdog

18 <@ = » wdCbAct Struct 26.0 D E E E watchdog times

19 g0 & ¥ chUsage Struct 320 D @ E E trigger counter

20 |« - cbOpenClose Int 320 =] =] ™ =] =] circuit breaker CB "on” trigger counter

21 < - rackinQut Int 34.0 D E E E D circuit breaker Rack "in® trigger counter

22 <1 L gndOnOff Int 36.0 o D @ E E D circuit breaker Gnd "on” trigger counter

23 <@ . lastStateCh Bool 380 false =] =] ™ =] =] last State from cb (on state)

24 <1 = laststateRack Bool 38.1 false D E E E D last State from rack (in state)

25 |41 L] lastStateGnd Bool 382 false =] ™ ™ =] O last State from gnd (on state)

The columns are as follows:

Column Desription
The name of the variable within the DB. The variable names are unique, and the
DB name is displayed in the upper-left corner, in this case: K11. The variable
names are supplemented with this, e.g., “K11".liveByte. This also means that

Name the DB can be copied and renamed one-for-one. That is, if this DB is copied and
renamed to, for example, “K12”, the above reference will be “K12”.liveByte.
In the case of a structure, for example, "cbUsage", the entire structure depth
must be defined, for example: “K11”.cbUsage.cbOpenClose.
The data type. Structures and arrays must be created when defining the DB by

Data type ; . :
entering, for example, type Struct in the Data type field.

Offset The offset of the variable within the DB. This appears only for non-optimized

DBs. More details: optimized DB

Start value

The starting value of the given variables, which the PLC takes on when
restarting. The default value can be overwritten in the cell.

Retain

Values to be retained when restarting. It can only be set for the entire DB, so it
is worth grouping the values to be stored in a DB

Accessible from
HMI/OPC UA/Web
API

The value is accessible from external applications. For structures and arrays, the
setting can only be defined for the entire block. OPC access can be
enabled/disabled in the settings, see DB Properties.

Writable from
HMI/OPC UA/Web
API

The given value can be written from external applications.

Visible in HMI

The setting disables or enables the HMI integration of the variable. In addition to

engineering disabling HMI, OPC can also be enabled, see DB Properties.
S . This allows you to initialize values in a data block (DB) online while the CPU is in
etpoint
RUN mode.
Comment Description of the function of the field.
DB Limits

e You can defin

e up to 252 structures within a single data block for S7-1200/S7-1500, regardless

http://lamaplc.com/

Printed on 2026/01/12 11:47



http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:db_1.png

2026/01/12 11:47 17/21 Automation! v0.0

of the data types used in the structures.

e Maximum DB Number: The total number of data blocks is generally capped at 65,535, due to
the common use of a 16-bit address range.

e Maximum DB Size (Standard - not optimized - Access): For older PLC models like S7-300/400
and for standard access DBs in newer models, each DB's size typically does not exceed 64 KB
(65,534 bytes).

e Maximum DB Size (Optimized Access): In contrast, S7-1200/S7-1500 CPUs that utilize optimized
access have a much larger size limit, which varies based on the CPU's total working memory
and can reach from 1 MB up to 10 MB or more per DB.

Instant vs global DB

A global DB is a data block that programmers can freely create and populate with variables. These
variables may include default Simatic types (INT, REAL, etc.), structures, arrays, or UDTs.

Instant DBs are implicitly created when FBs are called for the first time. This call is primarily through
the instant DB. When an FB is deleted, the TIA Portal also issues a separate warning about removing
the instant DB. The contents of the instant DB automatically update with changes to the FB's variable
list. It can include default Simatic variables like INT, REAL, structures, arrays, and UDTs. If the FB calls
other embedded FBs (e.g., TON, TOF), their instant DBs are also stored here, resulting in a multi-
instant DB.

DB Properties

General

: Attributes
Infarmaticn
Time stamps
Compilation [] onlystore in load memary
SLELERTE [ ] Data block write-protected in the device
Attributes

Download with... E Optimized block access

| B |

E Data block accessible from OPC UA

[l w SRS | [«Tu]

r oK 1 | Cancel |

(right-click on the DB - Properties..)

lamaPLC - http://lamaplc.com/


http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:db_3.png

Last update: 2026/01/06 13:13 automation:start http://lamaplc.com/doku.php?id=automation:start&rev=1767705197

Name the attribut Description

This attribute is stored on the PLC's Micro Memory Card (MMC) or
similar non-volatile storage, not in the CPU's working RAM,
making it ideal for large, infrequently used data such as recipes
or logs.

Only store in load memory It's accessed using special instructions like READ DBL or
WRIT_DBL to transfer data to/from working memory. This
preserves precious working memory, but requires explicit
programming to move data for active processing. The data
survives power cycles but can be lost with a factory reset.

Data block write-protected in

the device Make the entire data block read-only.

Optimized block access Optimized variable order within the DB. See below: Optimized

DB.
Data block accessible from The data block can be accessed and published by OPC UA. See:
OPC UA OPC UA.

Optimized DB

Simatic groups variables in the optimized DB so they occupy as little storage space as possible. This
means that it is “not visible from the outside” where a given data item is located within the storage
space, i.e., in this case, the offset is not displayed in the editor window:

= _* ., = E= "7 Keepactualvalues g Snapshot ;‘gr "‘5‘, Copysnapshots to startvalues g - | Load startvalues as actual values W), By
outputSignal
Name Data type start value Retain Accessible f.. Writa..  Visiblein . | Setpoint Supervis... Comment

1 |0 v Static

2 @ relK15_1 Bool false D @ @ @ D release K15 ch 1
ER T relK15_2 Bool false D E E E D release K15ch 2
4 |41 = reliK17_1 Bool false 0 =] =] =] 0 release K17 ch 1
5 @n relK17_2 Bool false D @ @ @ D release K17 ch 2

On the one hand, this helps better utilize the PLC's storage space. Still, on the other hand, it makes
operations that require direct addressing (communication modules - Modbus, direct addressing, etc.)
impossible. In such cases, this option must be disabled in the settings (right-click on the DB -
Properties.. = Attributes - Optimized block access = OFF)

Tags vs DB data

There are two basic methods for storing data in PLCs (in a simplified view). One involves placing
variables in a global memory table alongside input and output variables, while the other uses data
blocks (DBs). From my experience, storing data in DBs tends to be simpler and more straightforward
for several reasons.

¢ Function-specific data can be stored in DBs. For example, the “motorl” DB contains only data
for the 1st motor, but all of them (speed, load, temperature, on-off, errors, ...)

e |f someone wants to define a “motor2” as well, identical to “motorl” in terms of its parameters,
they just need to copy the previous DB

e Cross-reference management of data immediately points to the given DB, from which we can
immediately deduce their function

e |f the data is already in the instant DBs assigned to the FBs, it is easy to embed them in a
calling FB to use them as multi-instants.

http://lamaplc.com/ Printed on 2026/01/12 11:47


http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:db_4.png

2026/01/12 11:47 19/21 Automation! v0.0

Typically, | don't bother defining variables within the Tags; creating them directly in the databases
suffices—though this is just my personal preference.

Storing DB records in the load memory

In PLCs, working memory is PLC-dependent and often very limited. We may have a lot of information
that does not need to be read and written cyclically. Examples include recipe data (a list of
technological components), parameter data, or database assignments that are needed only
occasionally.

In these cases, one option is to store the data not in working memory but on the SD card and in load
memory, and to transfer them only when needed using the “WRIT_DBL"” and “READ_DBL" operations.

| —G WRIT_DBL Data record 1
DB
) Data record 2

Used data record Diata record 2

Data record 4

READ_DBL

Waorking memory Loading memary

“ More information:
TIA Datatypes: S7 data types summary table

2026/01/06 13:34

TIA Datatypes

List of data types used by Simatic S7. The page contains the more modern TIA
variable types as well as the earlier S7-classic types. 1 0 1 0

There are four data types in: Boolean, Text, Numeric, and Date/Time. Each data type 0 1 1 1
defines the format of information that can be entered into a data field and stored in
your database.

Datatyp mgst;m Range of values Examples $7-300/400|S7-1200/S7-1500
Binaries
1
FALSE or TRUE TRUE
Eﬁg’;i‘g’ 251”1“5'360 ) [BOOL#0 or BOOL#1 BOOL#1 X X X
1pByt 76 BOOL#FALSE oder BOOL#TRUE BOOL#TRUE

lamaPLC - http://lamaplc.com/


http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=automation:db_5.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3Astart&media=simatic:digi.png

Last update: 2026/01/06 13:13

automation:start http://lamaplc.com/doku.php?id=automation:start&rev=1767705197

Datatyp m:‘:;‘ Range of values Examples $7-300/400|S7-1200/S7-1500
B#16#00 .. B#16#FF 15,
EZTe'ia(ﬁ’s) 8 0. 255 BYTE#15, X X X
2#0 .. 2#11111111 B#15
W#16#0000 .. W#16#FFFF 55555,
‘LVC?QEH(SW) 16 0. 65535 WORD#55555, X X X
B#(0, 0) .. B#(255, 255) W#555555
DWORD (dw) . DW#16#0000 0000 .. DW#16#FFFF FFFF | DW#16#DEAD BEEF . . .
~details 0..4,294,967,295 B#(111, 222, 255, 200)
LWORD (Iw) LW#16#0000 0000 0000 0000 .. LW#16#DEAD BEEF DEAD BEEF
—details 64 LW#L6#FFFF FFFF FFFF FFFF B#(111, 222, 255, 200, 111, 222, 255, 200)|” - X
0..18.446.744.073.709.551.615 1222, 255,200, 111, 222, 255,
Datatyp n’)ll(ti:;‘ Range of values Examples S$7-300/400/S7-1200/S7-1500
Integers
SINT (si) o 128.. 127 +42, SINT#+42 ] . .
“details (hex only positive) 16#0 .. 16#7F 16#1A, SINT#16#2A
INT (i) 16 32768 .. 32.767 +1234, INT#+3221 . . .
-details (hex only positive) 16#0 .. 16#7FFF 16#1ABC
. -2.147.483.648 .. +2.147.483.647
EIdNe-I;a(i(lj;) 32 (hex only positive) %éiﬁi%gg&ﬁln"lse’ X X X
16400000000 .. 16#7FFFFFFF
USINT (usi) o 0..255 42, USINT#42 ] . .
~details 16#00 .. 16#FF 164FF
UINT (ui) 16 0. 65535 12.345, UINT#12345 ] . .
~details 16#0000 .. 16#FFFF 16#BEEF
UDINT (udi) 0..4.294.967.295
o 32 Pl 1.234.567.890, UDINT#1234567890 . X X
LINT (1) o -9.223.372.036.854.775.808 .. +1.234.567.890.123.456.789, ] ] .
—details +9.223.372.036.854.775.807 LINT#+1.234.567.890.123.456.789
ULINT (uli) 123.456.789.012.345,
—details 64 0..18.446.744.073.709.551.615 ULINT#123.456.789.012.345 : - X
Datatyp n"'l'::;‘ Range of values Examples $7-300/400|S7-1200/S7-1500
floating point numbers
REAL © N -3.402823e+38 .. -1.175 495¢-38 0.0, REAL0.0 ) ) )
~details +1.175 495e-38 .. +3.402823e+38 1.0¢-13, REAL#1.0e-13
-1.7976931348623158e+308 ..
-2.2250738585072014e-308
i%'i’i;il(s'r) 64 . 0.0, LREAL#0.0 - X X
+2.2250738585072014e-308 ..
+1.7976931348623158e+308
Datatyp n:')ll(ti:;‘ Range of values Examples S$7-300/400/S7-1200/S7-1500
Times
S5TIME (s5t) S5T#0H_OM_0S_OMS .. )
~details 16 S5T#2H_46M_305_OMS S5T#10s, SSTIME#10s X X
TIME (t) . T#-24d20h31m235648ms .. T#13d14h15m165630ms, . . X
—-details T#+24d20h31m23s647ms TIME#1d2h3m4s5ms
LTIME (It 6 LT#-106751d23n47m165854ms775us808NS |, .41 000410n15m24s130ms152us15ns, | _ N
—details LT#+106751d23h47m165854ms775us807ns LTIME#200d2h2m1s8ms652us315ns
Timer operations: IEC timers, TON (Generate on-delay), TOF (Generate off-delay), TP (Generate pulse), TONR (Time accumulator)
Datatyp m:‘:;‘ Range of values Examples $7-300/400|S7-1200(S7-1500
Counters
CHAR. 8 ASCII character set 'A', CHAR#'A' X X X
-details
WCHA.R (we) 16 Unicode character set WCHAR#'A' - X X
—details
STRING (s) n+2 , \ , ,
details (Byte) 0 .. 254 characters (n) Name', STRING#'lamaPLC X X X
WSTRING (ws) n+2 | |
details (Word) 0 .. 16382 characters (n) WSTRING#'lamaPLC - X X
Counter operations: CTU (count up), CTD (count down), CTUD (count up and down)
Datatyp n"'lg:;' Range of values Examples $7-300/400|S7-1200/S7-1500
Date & time
DATE (d) 16 D#1990-01-01 .. D#2168-12-31 D#2020-08-14, DATE#2020-08-14 X X X
—details -01-01 . -12- -08-14, -08-
TOD (tod)
. e TOD#11:22:33.444,
(Iél\éltEa_iEF_DAY) 32 TOD#00:00:00.000 .. TOD#23:59:59.999 [ pi o BlRtis o g X X X

http://lamaplc.com/

Printed on 2026/01/12 11:47



http://lamaplc.com/doku.php?id=simatic:scl_commands_timer_counter#ctu
http://lamaplc.com/doku.php?id=simatic:scl_commands_timer_counter#ctd
http://lamaplc.com/doku.php?id=simatic:scl_commands_timer_counter#ctud

2026/01/12 11:47 21/21 Automation! v0.0
Width
Datatyp (bits) Range of values Examples $7-300/400|S7-1200/S7-1500
(LIT?BE“%);’)DAY) 6 LTOD#00:00:00.000000000 .. LTOD#11:22:33.444 555 111, «
Sdetails LTOD#23:59:59.999999999 LTIME_OF_DAY#11:22:33.444 555 111
DT (dt) . . .
(DATE AND TIME) |64 Min.: DT#1990-01-01-0:0:0 DT#2020-08-14-2:44:33.111, X X
Sdetalls Max.: DT#2089-12-31-23:59:59.999 DATE_AND_TIME#2020-08-14-11:22:33.444
Min.: LDT#1970-01-01-0:0:0.000000000,
LDT (Idt) 16#0
(L_DATE_AND_TIME)|64 Max.: LDT#2020-08-14-1:2:3.4 X
-details LDT#2262-04-11-23:47:16.854775807,
16#7FFF_FFFF_FFFF_FFFF
DTL (dtl) Min.: DTL#1970-01-01-00:00:00.0 -,
—details %6 Max.: DTL#2554-12-31-23:59:59.999999999 | O 1 -#2020-08-14-10:12:13.23 X X
Datatyp Yl\ill(ti:r Range of values Examples $7-300/400/S7-1200/S7-1500
Pointers
Symbolic: “DB".“Tag”
POINTER (p) Absolute:
~details 48 P#10.0 X X
P#DB4.DBX3.2
Symbolic:
ANY (any) 80 “DB".StructVariable.firstComponent X X
—-details Absolut: P#DB11.DBX12.0 INT 3
P#M20.0 BYTE 10
Symbolic:
“Data_TIA Portal”.
\—/i\igltg:\ll;r (var) 0 StructVariable.firstComponent X X
Absolute: %MW10
P#DB10.DBX10.0 INT 12
BLOCK_FB 0 X X
BLOCK_FC 0 X X
BLOCK_DB 0 X
BLOCK_SDB 0 X -
VOID 0 X X X
PLC_DATA TYPE 0 X X X

2026/01/06 13:34

Important and frequently used procedures and functions

From:

http://lamaplc.com/ - lamaPLC

Permanent link:
http://lamaplc.com/doku.php?id=automation:start&rev=1767705197

Last update: 2026/01/06 13:13

lamaPLC - http://lamaplc.com/



http://lamaplc.com/
http://lamaplc.com/doku.php?id=automation:start&rev=1767705197

	Automation! v0.0
	Prolog
	Simatic variable types
	Bit & Byte
	DEAD_BEEF

	BYTE – WORD type variables
	INT type variables
	UINT type variables
	REAL type variables
	CHAR type variables
	STRING type variables
	TIME type variables
	Array
	Structure
	Data block (DB)
	DB Limits
	Instant vs global DB
	DB Properties
	Optimized DB
	Tags vs DB data
	Storing DB records in the load memory

	TIA Datatypes

	Important and frequently used procedures and functions


