
2026/01/19 19:41 1/29 Simatic variable types

lamaPLC - http://lamaplc.com/

Simatic variable types

Bit & Byte

 The Bit is the simplest form; it's a signal that can be true or false, with its official English
equivalents being “TRUE” or “FALSE,” or even simply 0 or 1. There is no 2 anymore because
two is represented by 10 according to the rules of the binary number system, which in this
case is not ten but one zero. To clearly distinguish this, we write numbers in the decimal
number system “just like that,” for example, 10. If this is a number in the binary number
system, then we denote it as 2#10.

The decimal number system stems from the fact that we have ten fingers and, historically, used them
to perform all our calculations. If we had, say, three fingers on each hand, meaning six in total, then
we would be using the six-number system now. Computing is based on the above yes-or-no logic, i.e.,
the binary number system, which is why we often use the hexadecimal number system. I'll talk about
that later. Let's first look at the binary number system through a byte to see how it works.

A byte is a variable type consisting of 8 bits. The value stored in it must be somewhere between 0 and
255, depending on the bit positions. The example below may help you understand this a little:

Let's take the bit sequence “01010110” as an example, which fills the above byte. The bits of a byte
are always numbered from right to left; position 0 is always on the right. Each position corresponds to
a given power of the binary number system; position 4 corresponds to 24 = 16. If there is a 0 in this
position in the example, then it does not “count”; if there is a one, then its value “counts”, and as can
be seen in the rows marked in green, the sum of the “counting” rows gives the current decimal value
of the byte, 86. That is, 2#01010110 = 86.

Therefore, the byte reaches its maximum value when all bits are set to 1. It can be calculated that
2#11111111 = 255. The byte data type holds values between 0 and 255.

http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:10.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:byte_pos_en.png

Last update: 2026/01/19 13:36 automation:s7_var http://lamaplc.com/doku.php?id=automation:s7_var

http://lamaplc.com/ Printed on 2026/01/19 19:41

In computing, we use the base-10 number system, as well as the binary and base-16 number
systems. The values ​​described in it are called hexadecimal numbers and are denoted by the prefix
“16#” or sometimes “hex#”. Sometimes the hexadecimal number system is simply the hash, like
this: “#ABCD”. The hexadecimal number system changes order of magnitude at 16, meaning that a
position can contain a value between 0 and 15. This can be very confusing in the base 10 number
system, so the two-digit positions are denoted by letters:

10 = 16#A
11 = 16#B
12 = 16#C
13 = 16#D
14 = 16#E
15 = 16#F

If a byte reaches its maximum value, meaning every bit is set to “1”, then: 2#11111111 = 255 =
16#FF

If we calculate: F, i.e., “15” * 16 + “15” = 255

In some ways, this can make our lives easier, because if we see a value of “16#FF” somewhere, or a
longer series of these, for example “16#FFFF_FFFF”, then we can suspect that we have reached the
maximum value of one of the variable types. I would also like to mention the 8-bit, i.e., octal number
system, it sometimes still occurs here and there, for example, in the case of numerical symbols, but
only rarely, we don’t really use it.

DEAD_BEEF

Just as “FF” is likely to represent the maximum of a given variable type, dead beef is a test value
designation, a play on letters. The letters of the hexadecimal number system are a, b, c, d, e, f.
#dead_beef contains all of them except c, so it is helpful for testing. The Windows calculator,
switched to programmer mode, is very helpful for hex-dec-bin conversions. From this, it turns out that
the value of 16#dead_beef is:

2026/01/06 15:01

More information: TIA Datatypes: S7 data types summary table

2026/01/06 13:34

http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:dead_beef.png

2026/01/19 19:41 3/29 Simatic variable types

lamaPLC - http://lamaplc.com/

BYTE – WORD type variables

There are plenty of variables in the world of automation. They differ in scope (size) and internal
structure depending on their use.

The simplest variable types have no internal structure, i.e., they can describe ones and zeros in
different scopes:

The longest 64-bit LWord didn't fit in the example above, but I think it's relatively easy to imagine.
The byte positions are on the bottom row. If everything works well, this is the byte order for the
longer variable types, but sometimes confusion arises in the matrix, and this order gets “tangled”.

This most often happens when we try to transfer long variables via communication to other systems,
such as HMI. In such cases, it is definitely worth testing the transfer, for example, with the above
trick, because when the specified #deadbeef is on one side. If the destination side shows #beefdead
or #efbeadde, we can rightly suspect a conversion discrepancy, which is easiest to correct on the
starting side by swapping the structures.

The following types are unsigned (UNSIGNED), meaning their minimum value is always zero.

Let's review the basic variable types and their features:

Type Bit Min. Max. Value range HEX Value range DEC
BYTE 8 0 28-1 0 .. FF 0 .. 255
WORD 16 0 216-1 0 .. FFFF 0 .. 65.535
DWORD 32 0 232-1 0 .. FFFF_FFFF 0 .. 4.294.967.295
LWORD 64 0 264-1 0 .. FFFF_FFFF_ FFFF_FFFF 0 .. 18.446.744.073.709.551.615

Any rules do not bind the contents of the above variables; they actually only contain some bit
combinations. They can't have negative values by default; INT type variables are used for that.

http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:byte_word_dword_en.png

Last update: 2026/01/19 13:36 automation:s7_var http://lamaplc.com/doku.php?id=automation:s7_var

http://lamaplc.com/ Printed on 2026/01/19 19:41

More information: TIA Datatypes: S7 data types summary table

2026/01/06 13:34

INT type variables

In the case of the INT, which is the integer type, the definition becomes slightly more complex in
terms of formal constraints because of the introduction of the sign bit. This means that the highest
value of the variable's position, the first bit on the left, will represent the sign: if it is “1”, the variable
indicates a negative number, whereas if it is “0”, it indicates a positive one.

Really, just for completeness, in the case of negative numbers, the program uses
the so-called “two's complement” representation. That is, it first negates all the
bits of the numerical value, i.e., it converts 0 to 1 and vice versa, and then adds 1
to the resulting value. This conversion means that the negative value cannot be
read directly from the bit combination unless the conversion is performed again
in the opposite direction:

As a result, Simatic only uses binary and hexadecimal notations for positive numbers, meaning that
negative hexadecimal or binary values will not show the actual numerical value but instead the value
based on the bit pattern. For example, A, which equals ten, will still be 16#A, but -A, which equals
-10, will be displayed in WORD format as FFF6. This misunderstanding is resolved by the rule that
hexadecimal and binary signals cannot have negative values in Simatic:

http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:two_complement_en.png

2026/01/19 19:41 5/29 Simatic variable types

lamaPLC - http://lamaplc.com/

In the above example, I tried to assign a value to an INT variable. It is clear that the compiler
accepted the negative value when specified in decimal, but not when specified in hexadecimal or
binary. Let's look at the contents of the INT variable in several forms:

DEC SINT HEX (8-bit) SINT BIN (8-bit) INT HEX (16-bit) INT BIN (16-bit)
12 16#7F 2#0111_1111 16#007F 2#0000_0000_0111_1111
1 16#01 2#0000_0001 16#0001 2#0000_0000_0000_0001
-1 16#FF 2#1111_1111 16#FFFF 2#1111_1111_1111_1111
-85 16#AB 2#1010_1011 16#FFAB 2#1111_1111_1010_1011
-128 16#80 2#1000_0000 16#FF80 2#1111_1111_1000_0000

The INT type is optimized for decimal handling; it can also be used in
hexadecimal and binary forms, but in these cases, you need to pay close
attention to the type's special characteristics.

Compared to byte and word type variables, this means that the maximum value of these variables is
almost halved when dealing with decimal numbers. However, roughly the same magnitude can be
used in the negative direction. For example, a one-byte-long SINT type will operate within the range
-128 to 127, unlike the “plain” BYTE range of 0 to 255.

The letter “S” in the SINT definition stands for the word “short”, as the INT type is the default integer
(16 bits), while SINT is short, with half the bit length—8 bits. The letter “D” represents the word
“double,” with its 32 bits.

Type Name Bit Minimum Maximum Value range
HEX * Value range DEC

SINT short
integer 8 -(27) 27-1 0 .. 7F -128 .. 127

INT integer 16 -(215) 215-1 0 .. 7FFF -32.768 .. 32.767

DINT double
integer 32 -(231) 231-1 0 .. 7FFF_FFFF -2.147.483.648 .. +2.147.483.647

LINT
double
long
integer

64 -(263) 263-1 0 .. 7FFF_FFFF_
FFFF_FFFF

-9.223.372.036.854.775.808 ..
+9.223.372.036.854.775.807

* Negative number ranges are not supported in hexadecimal and binary formats.

http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:int_neg_hex.png

Last update: 2026/01/19 13:36 automation:s7_var http://lamaplc.com/doku.php?id=automation:s7_var

http://lamaplc.com/ Printed on 2026/01/19 19:41

UINT type variables

The unsigned UINT type (the letter U stands for unsigned) removes the hassle of dealing with
negative values from the world of the INT type. It corresponds to basic types like BYTE, WORD, etc., in
terms of value range, but with INT it indicates that we want to treat the contents of the variables as
numeric values.

Type Name Bit Minimum Maximum Value range
HEX * Value range DEC

USINT unsigned short
integer 8 0 28 0 .. FF 0 .. 255

UINT unsigned
integer 16 0 216 0 .. FFFF 0 .. 65.535

UDINT Unsigned double
integer 32 0 232 0 .. FFFF_FFFF 0 .. 4.294.967.295

ULINT Unsigned long
integer 64 0 264 0 .. FFFF_FFFF_

FFFF_FFFF 0 .. 18.446.744.073.709.551.615

* Negative number ranges are not supported in hexadecimal and binary formats.

More information: TIA Datatypes: S7 data types summary table

2026/01/06 13:34

REAL type variables

REAL type variables (REAL, LREAL) are defined by the IEEE 754 (IEEE 754/1985 Floating Point
Number Format) standard. This is a fairly complex type that, despite its intimidating complexity, is
well-suited for storing fractional numbers.

If you are interested in the definition of the type, please look it up on Wikipedia, for example, because
I can't; I can't explain how this type works simply.

Sign: The sign is determined by one bit (red color). This bit can be either “0” (positive) or “1”
(negative).
Exponent: The exponent ranges from 128 to -127.
Mantissa: Only the mantissa is a fractional part of the overall value.

Type Bit Value range DEC
REAL 32 -3.402823e+38 .. -1.175 495e-38 .. +1.175 495e-38 .. +3.402823e+38

http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:real_en.png

2026/01/19 19:41 7/29 Simatic variable types

lamaPLC - http://lamaplc.com/

Type Bit Value range DEC

LREAL 64 -1.7976931348623158e+308 .. -2.2250738585072014e-308 ..
+2.2250738585072014e-308 .. +1.7976931348623158e+308

In practice, REAL is suitable for handling fractions and large values. Due to its nature, it is mainly used
for processing and evaluating measurements. It is important to note that, because of its structure, if a
very large value is stored in it and we try to increase or decrease it by, say, a very small value,
nothing will happen; the stored value will not change. The type is inherently not suitable for handling
exact counters, since it handles numbers “in order of magnitude.“ INT is more appropriate for
counting functions.

More information: TIA Datatypes: S7 data types summary table

2026/01/06 13:34

If you'd like to support the development of the site with the price of a
coffee — or a few — please do so here.

2026/01/06 15:16 · vamsan

CHAR type variables

CHAR (character) types are suitable for storing a single letter each. The original CHAR uses codes
from the ancient ASCII character mapping table. This table contains a mix of 255 different characters
(letters, numbers, control characters, graphic symbols). Its advantage is that it requires only 1 byte,
but its disadvantage is that the character set is quite limited; for example, Hungarian or Chinese
accented characters are mostly excluded.

The extended version of CHAR is WCHAR (wide-character), which has a 2-byte length but can be
used more broadly with its (UNICODE) UCS-2 mapping. Up to 65,535 character mappings can be
encoded with 16 bits; UNICODE does not fully utilize this range.

When declaring an operand of data type WSTRING you can define its length using square brackets (for
example WSTRING[10]). If you do not specify a length, the length of the WSTRING is set to 254
characters by default.

Type Name Bit Code table Value range HEX Value range DEC Example
CHAR character 8 ASCII 0 .. FF 0 .. 255 'P', CHAR#'P'
WCHAR Wide character 16 UCS-2 $0000 - $D7FF 0 .. 55.295 WCHAR#'Ő'

Special characters

A character string can also contain special characters. The escape character $ is used to identify
control characters, dollar signs and single quotation marks.

https://www.paypal.com/donate/?hosted_button_id=BKY97QYZYJJSY
http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:coffee_3.png

Last update: 2026/01/19 13:36 automation:s7_var http://lamaplc.com/doku.php?id=automation:s7_var

http://lamaplc.com/ Printed on 2026/01/19 19:41

Character Hex Meaning Example
$L or $l 000A Line feed '$LText', '$000AText'

$N 000A and 000D
Line break
The line break occupies 2 characters in the
character string.

'$NText',
'$000A$000DText'

$P or $p 000C Page feed '$PText', '$000CText'
$R or $r 000D Carriage return (CR) '$RText','$000DText'
$T or $t 0009 Tab '$TText', '$0009Text'
$$ 0024 Dollar sign '100$$t', '100$0024t'
$' 0027 Single quotation mark '$'Text$'','$0027Text$0027
2026/01/06 13:34

STRING type variables

STRING also has two subtypes, just like CHAR. The old, “old-school” STRING, which describes the text
with ASCII characters, and WSTRING, which uses WCHAR characters with two bytes per character.
Both types are suitable for storing text, which can be extremely useful for communication, especially
in HMI connections.

For both types, the first two positions show the maximum length of the given STRING and the current
length it has been filled with. One position equals one byte for STRING, and one word for WSTRING.

In the example above, taken from the PLC status, I entered the phrase “lama!” into an 8-byte STRING
variable. The first two bytes contain the maximum length of the STRING (8) and the current length
(5), followed by the phrase as our message.

If I change the display format to hexadecimal for the characters, I see the ASCII code for each letter.

That is, the letter “l” is ASCII 16#6C, and “a” is ASCII 16#61, … For WSTRING, this assignment

http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:string_example_1.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:string_example_2.png

2026/01/19 19:41 9/29 Simatic variable types

lamaPLC - http://lamaplc.com/

appears like this:

The “$00l” content type is due to the nature of UNICODE, as “simple” characters do not fill the entire
UCS-2 space. It is clear that while we counted the positions per byte above, in this case each position
occupies a word. The first two words here also contain the maximum length of the STRING (8) and the
current length (5).

The same definition is given in hexadecimal form as follows:

If we fully fill in the UCS-2 word field, we can see what the “non-simple characters” look like. In the
first step, I entered longer codes in the word variables per character (1), and from this the “example”
WSTRING (2) was displayed:

To sum it all up:

Type Length Character
encoding Length (characters) Example

http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:string_example_3.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:string_example_4.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:string_example_5.png

Last update: 2026/01/19 13:36 automation:s7_var http://lamaplc.com/doku.php?id=automation:s7_var

http://lamaplc.com/ Printed on 2026/01/19 19:41

Type Length Character
encoding Length (characters) Example

STRING 2 byte + text CHAR, ASCII 0 .. 254 byte / character 'lamaPLC',
STRING#'lamaPLC'

WSTRING 2 word + text WCHAR, UNICODE 0 .. 16382 word /
character WSTRING#lamaPLC

More information: TIA Datatypes: S7 data types summary table

2026/01/06 13:34

TIME type variables

TIME types mainly serve for timing purposes. The most common type in programs is simple TIME,
such as in connection with IEC timings, like this:

These will be discussed later, but in the example above, the time (PT) is specified in TIME format, with
12 seconds written as t#12s.

TIME is a DINT type variable that stores time in 32 bits, measured in milliseconds. The stored value
can be positive or negative, and the rules for negative integers apply, meaning negative TIME values
cannot be represented in hexadecimal or binary form.

The same rules apply to the LTIME type, but it stores nanoseconds in an LINT variable, using 64 bits.
Interestingly, the maximum value of LTIME is 106,751 days, or about 292 years.

The S5TIME type was included among the variables for downward compatibility; it was the default
(and only) time type during the S5 PLC era.

Type Length
(form)

Value Range
HEX Value Range DEC Example

TIME 32 bit
(DINT) 0 .. 7FFF_FFFF T#-24d20h31m23s648ms ..

T#+24d20h31m23s647ms T#12s, 16#ABCD

LTIME 64 bit
(LINT)

0 .. 7FFF_FFFF_
FFFF_FFFF

LT#-106751d23h47m16s
854ms775us808ns ..
LT#+106751d23h47m16s
854ms775us807ns LT#12s

LTIME#12s,
16#ABCD

S5TIME 16 bit S5T#0H_0M_0S_0MS ..
S5T#2H_46M_30S_0MS

S5T#10s,
S5TIME#10s

S5TIME

Underscores in time and date are optional
It is not necessary to specify all time units (for example: T# 5h10s is valid)

http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:time_example_1.png

2026/01/19 19:41 11/29 Simatic variable types

lamaPLC - http://lamaplc.com/

Maximum time value = 9,990 seconds or 2H_46M_30S

Time base Binary Code
10 ms 00
100 ms 01
1 s 10
10 s 11

More information:
TIA Datatypes: S7 data types summary table

2026/01/06 13:34

If you'd like to support the development of the site with the price of a
coffee — or a few — please do so here.

2026/01/06 15:16 · vamsan

Array

An array is used to group data of the same type into blocks that can be easily addressed, i.e.,
indexed.

Arrays can be 1-, 2-, or 3-dimensional, or even 6-dimensional. The following example illustrates the
structure of 2- and 3-dimensional arrays:

http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:s5timeformat.png
https://www.paypal.com/donate/?hosted_button_id=BKY97QYZYJJSY
http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:coffee_3.png

Last update: 2026/01/19 13:36 automation:s7_var http://lamaplc.com/doku.php?id=automation:s7_var

http://lamaplc.com/ Printed on 2026/01/19 19:41

The image above displays a two-dimensional array of type “byte.” The first index represents the rows,
while the second represents the columns. The value range of a byte is 0 to 255, so only values within
this range are allowed. In the example above, the program's type definition is as follows:

arry : Array[0..5, 0..2] of Byte;

The assignment is displayed in the code like this:

tomb[3, 1] := 1;

The indexing of a three-dimensional array can be illustrated as follows:

In this case, the above assignment can be defined in the program as follows:

tomb[3, 1, 0] := 1;

Array of struct

The elements of the array are always homogeneous, meaning their types cannot vary. However, there

http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:dim1_en.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:dim2_en.png

2026/01/19 19:41 13/29 Simatic variable types

lamaPLC - http://lamaplc.com/

can be multiple instances of a single type within a single array if we define a Struct type as an array
element. The hydraulic motors described as an example in Struct can also be defined as an array:

In this case, I specified the type of the four-element array as “Struct”. Here, a field opens under the
name of the first array element (tomb[0]), where the Struct's elements can be defined. It is important
that the array is homogeneous, meaning the structure can only be set for the first element; the other
elements will be copies of it without the ability to modify the structure (values, of course, can
change). In the example above, the value assignment will look like this (the DB name is “motors”):

"motors".tomb[1].current := 32.2;

More information:
TIA Datatypes: S7 data types summary table

2026/01/06 13:34

Structure

A structure is a way of organizing multiple variables, often of different types, into a group. For
example, the characteristics of several devices, such as motors, can be described using the same
data groups.

Take an electric motor, for instance. Such a motor can have many technical parameters, but for
simplicity, let's narrow down the range of these parameters.

http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:dim3_en.png

Last update: 2026/01/19 13:36 automation:s7_var http://lamaplc.com/doku.php?id=automation:s7_var

http://lamaplc.com/ Printed on 2026/01/19 19:41

In this case, the motor has a text identifier, typically a KKS identifier in larger installations. Then there
are voltage and current measurements, an operating mode, and a status indication. These data
belong together and describe a motor. In the example above, this motor is, for example, the first
motor of a hydraulic block. In the case of multiple motors, this structure remains—only the
parameters change, as this makes it easy to handle the data uniformly:

This is what it looks like in the TIA Portal when the structures are open:

The display of structures can be limited to just their names, with an arrow placed in front of the name
to close the content:

http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:structure_example_1.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:structure_example_2.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:structure_example_3.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:structure_example_4.png

2026/01/19 19:41 15/29 Simatic variable types

lamaPLC - http://lamaplc.com/

More information:
TIA Datatypes: S7 data types summary table

2026/01/06 13:34

UDT

The structure of the UDT (User Defined Type) is identical to that of the STRUCTURE type; you can
create more complex variables from existing variables, structures, and their arrays. The key
difference is that while a STRUCTURE is valid within a specific function (FB, FC, OB), a UDT is a
universal type that must be defined in a separate library within the TIA Portal (PLC > PLC data types).
Variables created from the UDT can be used throughout the entire program, which is especially useful
for large-scale functions like communication, where maintaining an identical structure is important.
However, when modifying a UDT, be aware that it may sometimes cause the program to crash.

Variables created from the UDT can be used throughout the entire program, which is especially useful
for large-scale functions like communication, where maintaining an identical structure is important.
However, when modifying a UDT, be aware that it may sometimes cause the program to crash.

http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:udt_1.png

Last update: 2026/01/19 13:36 automation:s7_var http://lamaplc.com/doku.php?id=automation:s7_var

http://lamaplc.com/ Printed on 2026/01/19 19:41

The UDTs shown here fall into two categories: The normal UDTs (icon:) are fully editable and can be
modified freely. The locked UDTs (icon:) are connected to closed (typically system) functions;
modifying them could cause major issues in the program.

A locked UDT is also shown by an icon () in the corner of the editor window.

PLC data types (UDT) can be nested up to 8 levels deep. Starting from firmware V4.0, CPUs in the
S7-1500 series support nesting up to 26 levels. Each ARRAY of STRUCT/UDT uses 3 hierarchy levels.

The UDT type can be imported and exported quickly. To export: right-click on the specific type,
choose “Generate source from blocks,” and select “Selected blocks only.” To import: go to PLC, then
External source files, click “Add new external file,” right-click the external file, and select “Generate
block from source.”

2026/01/19 13:27 · vamsan

OB, DB, FB, FC

PLCs differ from PCs in several ways. Their structure and programming architecture are simpler and
more straightforward. A key difference is that they lack a traditional file system; instead, they consist
of four main components:

Symbol Description
OB – organization block: OBs play a special role in running programs, as they
essentially start programs based on various criteria. The simplest is OB1, which
runs 'continuously'. As soon as a complete execution cycle ends — that is, all
programs started from the OB have run — it restarts them after the signals are
output and read. There are scheduled, error-related, and interrupt OBs; more
details are available in the OB section.
A DB – data block: A DB organizes data based on various aspects and has two
primary types. The global DB is created directly by the programmer, whereas
the instant DB is a storage block assigned to an FB. For more information, refer
to the DB chapter.

FC – FB: Throughout the program, modules that are repeated multiple times or are structurally
different can be organized into FBs or FCs. This approach is crucial during commissioning and later
corrections to ensure the code remains clear and well-structured. For instance, unorganized code
'dumped' into OB1 raises concerns for experienced programmers reviewing the system. Several
other red flags exist, where acceptance only occurs if the code is entirely rewritten.

FC – Function. These are basic program blocks that do not pass variables to
subsequent cycles. Examples include a module that creates colors in an HMI or a
segment that performs mathematical operations. Further details are available in
the FC chapter.

http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:udt_4.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:udt_2.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:udt_3.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:udt_5.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:ob.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:db.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:fc.png

2026/01/19 19:41 17/29 Simatic variable types

lamaPLC - http://lamaplc.com/

FB – function block. Each FB is always linked to a Data Block (DB) that holds
some of its data. This DB operates independently of cycles. Sometimes, it isn't a
unique DB but a multi-instance DB. More information about these can be found
in the FB chapter.
iDB - instant DB: Although it appears as a standard DB in the TIA Portal without a
distinct symbol, I am explicitly identifying this DB type in this document. It is
always linked to a specific FB and stores the non-temporary data of that FB. For
more information, refer to the DB chapter.

An example of program calls

The OB32 calls the FC1 cyclically every 100 ms.1.
The FC1 first calls the first inverter, then the second inverter.2.
The FB1, whose instant data block is DB12, is called. The FB1 initiates a Modbus Client call3.
(MB_CLIENT_1), which reads its parameters (IP, unitID, etc.) from DB14. Because this FB is
embedded within FB1, it receives a multi-instant block in DB12. The results of the Modbus read
are written to DB15.
The second Modbus read operates similarly, with its parameters also in DB14 and its multi-4.
instant block in DB12.
FC1 is called again, which then calls inverter2, following a similar call sequence as the first5.
case.
Control returns to OB32, which waits for the next 100 ms cycle and then calls FC1 again.6.

2026/01/06 18:00 · vamsan

http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:fb.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:idb.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:ob_call_1.png

Last update: 2026/01/19 13:36 automation:s7_var http://lamaplc.com/doku.php?id=automation:s7_var

http://lamaplc.com/ Printed on 2026/01/19 19:41

Data block (DB)

“DB” stands for DATA_BLOCK or the German term “Datenbaustein', indicating a data area. It can
contain various data types permitted and defined by the specific PLC. The total size of all DBs is
limited by the PLC's data capacity. Since the PLC isn't optimized for storing large data, we do not save
images, music, files, or extensive text files within a DB. In the TIA-Portal, DBs are marked with a small
blue barrel icon (). The image below shows the contents of a DB, along with some settings:

The columns are as follows:

Column Desription

Name

The name of the variable within the DB. The variable names are unique, and the
DB name is displayed in the upper-left corner, in this case: K11. The variable
names are supplemented with this, e.g., “K11”.liveByte. This also means that
the DB can be copied and renamed one-for-one. That is, if this DB is copied and
renamed to, for example, “K12”, the above reference will be “K12”.liveByte.
In the case of a structure, for example, ”cbUsage“, the entire structure depth
must be defined, for example: “K11”.cbUsage.cbOpenClose.

Data type The data type. Structures and arrays must be created when defining the DB by
entering, for example, type Struct in the Data type field.

Offset The offset of the variable within the DB. This appears only for non-optimized
DBs. More details: optimized DB

Start value The starting value of the given variables, which the PLC takes on when
restarting. The default value can be overwritten in the cell.

Retain Values ​​to be retained when restarting. It can only be set for the entire DB, so it
is worth grouping the values ​​to be stored in a DB

Accessible from
HMI/OPC UA/Web
API

The value is accessible from external applications. For structures and arrays, the
setting can only be defined for the entire block. OPC access can be
enabled/disabled in the settings, see DB Properties.

Writable from
HMI/OPC UA/Web
API

The given value can be written from external applications.

http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:db_0.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:db_1.png

2026/01/19 19:41 19/29 Simatic variable types

lamaPLC - http://lamaplc.com/

Column Desription
Visible in HMI
engineering

The setting disables or enables the HMI integration of the variable. In addition to
disabling HMI, OPC can also be enabled, see DB Properties.

Setpoint This allows you to initialize values ​​in a data block (DB) online while the CPU is in
RUN mode.

Comment Description of the function of the field.

DB Limits

You can define up to 252 structures within a single data block for S7-1200/S7-1500, regardless
of the data types used in the structures.
Maximum DB Number: The total number of data blocks is generally capped at 65,535, due to
the common use of a 16-bit address range.
Maximum DB Size (Standard - not optimized - Access): For older PLC models like S7-300/400
and for standard access DBs in newer models, each DB's size typically does not exceed 64 KB
(65,534 bytes).
Maximum DB Size (Optimized Access): In contrast, S7-1200/S7-1500 CPUs that utilize optimized
access have a much larger size limit, which varies based on the CPU's total working memory
and can reach from 1 MB up to 10 MB or more per DB.

Instant vs global DB

A global DB is a data block that programmers can freely create and populate with variables. These
variables may include default Simatic types (INT, REAL, etc.), structures, arrays, or UDTs.

Instant DBs are implicitly created when FBs are called for the first time. This call is primarily through
the instant DB. When an FB is deleted, the TIA Portal also issues a separate warning about removing
the instant DB. The contents of the instant DB automatically update with changes to the FB's variable
list. It can include default Simatic variables like INT, REAL, structures, arrays, and UDTs. If the FB calls
other embedded FBs (e.g., TON, TOF), their instant DBs are also stored here, resulting in a multi-
instant DB.

DB Properties

Last update: 2026/01/19 13:36 automation:s7_var http://lamaplc.com/doku.php?id=automation:s7_var

http://lamaplc.com/ Printed on 2026/01/19 19:41

(right-click on the DB → Properties..)

Name the attribut Description

Only store in load memory

This attribute is stored on the PLC's Micro Memory Card (MMC) or
similar non-volatile storage, not in the CPU's working RAM,
making it ideal for large, infrequently used data such as recipes
or logs.
It's accessed using special instructions like READ_DBL or
WRIT_DBL to transfer data to/from working memory. This
preserves precious working memory, but requires explicit
programming to move data for active processing. The data
survives power cycles but can be lost with a factory reset.

Data block write-protected in
the device Make the entire data block read-only.

Optimized block access Optimized variable order within the DB. See below: Optimized
DB.

Data block accessible from
OPC UA

The data block can be accessed and published by OPC UA. See:
OPC UA.

Optimized DB

Simatic groups variables in the optimized DB so they occupy as little storage space as possible. This
means that it is “not visible from the outside” where a given data item is located within the storage
space, i.e., in this case, the offset is not displayed in the editor window:

On the one hand, this helps better utilize the PLC's storage space. Still, on the other hand, it makes

http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:db_3.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:db_4.png

2026/01/19 19:41 21/29 Simatic variable types

lamaPLC - http://lamaplc.com/

operations that require direct addressing (communication modules - Modbus, direct addressing, etc.)
impossible. In such cases, this option must be disabled in the settings (right-click on the DB →
Properties.. → Attributes → Optimized block access → OFF)

Tags vs DB data

There are two basic methods for storing data in PLCs (in a simplified view). One involves placing
variables in a global memory table alongside input and output variables, while the other uses data
blocks (DBs). From my experience, storing data in DBs tends to be simpler and more straightforward
for several reasons.

Function-specific data can be stored in DBs. For example, the “motor1” DB contains only data
for the 1st motor, but all of them (speed, load, temperature, on-off, errors, …)
If someone wants to define a “motor2” as well, identical to “motor1” in terms of its parameters,
they just need to copy the previous DB
Cross-reference management of data immediately points to the given DB, from which we can
immediately deduce their function
If the data is already in the instant DBs assigned to the FBs, it is easy to embed them in a
calling FB to use them as multi-instants.

Typically, I don't bother defining variables within the Tags; creating them directly in the databases
suffices—though this is just my personal preference.

Storing DB records in the load memory

In PLCs, working memory is PLC-dependent and often very limited. We may have a lot of information
that does not need to be read and written cyclically. Examples include recipe data (a list of
technological components), parameter data, or database assignments that are needed only
occasionally.

In these cases, one option is to store the data not in working memory but on the SD card and in load
memory, and to transfer them only when needed using the “WRIT_DBL” and “READ_DBL” operations.

http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:db_5.png

Last update: 2026/01/19 13:36 automation:s7_var http://lamaplc.com/doku.php?id=automation:s7_var

http://lamaplc.com/ Printed on 2026/01/19 19:41

More information:
TIA Datatypes: S7 data types summary table

2026/01/06 13:34

Direct/indirect addressing

Addressing methods are mostly tied to variable types, not areas, so the following procedures apply to
both DB and Tag variables.

Direct addressing

Direct addressing in Simatic is typically symbolic addressing, meaning in the simplest case we
correspond two variables of the same type to each other:

fromReal : Real;
fromInt : Int;
toReal : Real;
toInt : Int;
…

#toInt := #fromInt;
#toReal := #fromReal;

If the types do not match, conversion will help us:

#toInt := REAL_TO_INT(IN := #fromReal);

It is crucial to understand that conversion can lead to data loss. In the example above,
the REAL type can store much larger numbers and fractional parts, while the INT only
handles smaller integers and rounds off fractions. When converting between variables
with different ranges, all values outside the smaller range should be considered. In this
case, rather than using an INT, a variable with a broader range should be selected
(example DINT, LINT).

Direct addressing is also applicable to STRUCTURE and ARRAY types, provided both sides have
identical structures.

Another approach is direct addressing, which involves referring to a variable's sub-elements. Although
this method applies to a limited range of variables, it is a simple form of assignment. While it isn't as
straightforward as the S7-Classic AT command that many programmers prefer, it is at least available:

2026/01/19 19:41 23/29 Simatic variable types

lamaPLC - http://lamaplc.com/

Slice addressing

Slice addressing involves dividing a memory region, such as a byte or a word, into smaller segments,
such as booleans. With S7-1200 and S7-1500, you can target specific parts within declared variables
(only by byte, word, dword) and access segments of 1, 8, 16, or 32 bits.

The following example is a SPLIT function that splits a WORD Input variable into bits:

// FC Input : inWord (Word)
// FC output: 16 variable bit0..bit15 (Bool)
// splitting
#bit0 := #inWord.%X0;
#bit1 := #inWord.%X1;
#bit2 := #inWord.%X2;
#bit3 := #inWord.%X3;
#bit4 := #inWord.%X4;
#bit5 := #inWord.%X5;
#bit6 := #inWord.%X6;
#bit7 := #inWord.%X7;
#bit8 := #inWord.%X8;
#bit9 := #inWord.%X9;
#bitA := #inWord.%X10;
#bitB := #inWord.%X11;
#bitC := #inWord.%X12;
#bitD := #inWord.%X13;
#bitE := #inWord.%X14;
#bitF := #inWord.%X15;

Pointer; indirect addressing

http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:slice_1.png

Last update: 2026/01/19 13:36 automation:s7_var http://lamaplc.com/doku.php?id=automation:s7_var

http://lamaplc.com/ Printed on 2026/01/19 19:41

In the TIA Portal, there are two ways to perform indirect addressing or pointer referencing: the ANY
and the VARIANT. However, it is important to note that the S7-1200 series PLCs do not support the
ANY method. Using a pointer essentially involves moving a data block of a specific size to a memory
area of the same size. This operation ignores the structure and variables within the data area, making
it a quick and useful method when applied carefully. However, careless use of this tool can be
very risky.

A key issue is that it doesn't handle the variables within the data being pointed to; for example, when
searching for errors with xref, these procedures are not visible to the compiler, which can lead to
difficult-to-detect errors caused by improper pointer use.

ANY type

Structure of the ANY Pointer (10 Bytes):

Name Length Description
Syntax ID 1 byte Always 16#10 for S7

Data Type 1 byte Code for the type of data being pointed to (e.g., 16#02 for Byte; see
below in the table “TIA Coding of data types”

Repetition Factor 2 bytes Number of elements of the specified data type
DB Numbe 2 bytes The number of the data block (0 if not in a DB)

Memory Area 1 byte Code for the memory area (e.g., 16#84 for DB; see below in the table
“TIA Coding of the memory area”)

Address 3 bytes The start address of the data (bit and byte address)

TIA Coding of data types

The following table lists the coding of data types for the ANY pointer:

Hexadecimal code Data type Description
B#16#00 NIL Null pointer
B#16#01 BOOL Bits
B#16#02 BYTE bytes, 8 bits
B#16#03 CHAR 8-bit characters
B#16#04 WORD 16-bit words
B#16#05 INT 16-bit integers
B#16#06 DWORD 32-bit words
B#16#07 DINT 32-bit integers
B#16#08 REAL 32-bit floating-point numbers
B#16#0B TIME Time duration
B#16#0C S5TIME Time duration
B#16#09 DATE Date
B#16#0A TOD Date and time
B#16#0E DT Date and time
B#16#13 STRING Character string
B#16#17 BLOCK_FB Function block

2026/01/19 19:41 25/29 Simatic variable types

lamaPLC - http://lamaplc.com/

Hexadecimal code Data type Description
B#16#18 BLOCK_FC Function
B#16#19 BLOCK_DB Data block
B#16#1A BLOCK_SDB System data block
B#16#1C COUNTER Counter
B#16#1D TIMER Timer
2026/01/16 12:40 · vamsan

TIA Coding of the memory area

The following table lists the coding of the memory areas for the ANY pointer:

Hexadecimal code Area Description
B#16#80 P I/O
B#16#81 I Memory area of inputs
B#16#82 Q Memory area of outputs
B#16#83 M Memory area of bit memory
B#16#84 DBX Data block
B#16#85 DIX Instance data block
B#16#86 L Local data
B#16#87 V Previous local data
2026/01/16 12:51 · vamsan

Example of using the ANY type

The pointer with the ANY type is most frequently used with the BLKMOV command, which copies data
from one area to another indirectly. In the example below, the created dataset is transferred to one of
three mobile data areas based on the location of the variable “assHMI”.Panel1ASS points:

CASE "assHMI".Panel1ASS OF
 1: // ASS1 data to disp 1
 #state := BLKMOV(SRCBLK := P#db108.dbx0.0 BYTE 72, DSTBLK =>
P#db108.dbx216.0 BYTE 72);
 2: // ASS1 data to disp 2
 #state := BLKMOV(SRCBLK := P#db108.dbx72.0 BYTE 72, DSTBLK =>
P#db108.dbx216.0 BYTE 72);
 3: // ASS1 data to disp 3
 #state := BLKMOV(SRCBLK := P#db108.dbx144.0 BYTE 72, DSTBLK =>
P#db108.dbx216.0 BYTE 72);
 ELSE // Statement section ELSE
 ;
END_CASE;

VARIANT versus ANY

ANY is a fixed 10-byte structure that references an absolute memory address.

Last update: 2026/01/19 13:36 automation:s7_var http://lamaplc.com/doku.php?id=automation:s7_var

http://lamaplc.com/ Printed on 2026/01/19 19:41

VARIANT is a type-safe pointer that preserves the original data type information and enables
symbolic addressing without the need for fixed memory location overhead.
The ANY is an older type, already available in the S300 / 400 series.

* The ANY can only be used with the S7-1500, whereas VARIANT are accessible on all S7 models.

VARIANT type

A VARIANT type parameter is a pointer that can reference various data types beyond a simple
instance. This pointer can be an object of a basic data type like INT or REAL, or it can be a STRING,
DTL, ARRAY of STRUCT, UDT, or an ARRAY of UDT. The VARIANT pointer can also recognize structures
and point directly to individual members of those structures. An operand of VARIANT type does not
consume space in the instance data block or work memory but does require memory on the CPU.

Directly assigning a tag to a VARIANT, like myVARIANT := #Variable, is not
possible.
Direct reading or writing of a signal from an I/O input or output is only
possible with an S7-1500 module.
You can only reference a complete data block if it was originally created
from a user-defined data type (UDT).

2026/01/15 15:37 · vamsan

If you'd like to support the development of the site with the price of a
coffee — or a few — please do so here.

2026/01/06 15:16 · vamsan

TIA Data type limits

Decimal Hex TIA data
type Byte Description

18,446,744,073,709,551,615 FFFF FFFF FFFF FFFF LWORD,
ULINT 8 The maximum unsigned 64 bit

value (264 − 1)

9,223,372,036,854,775,807 7FFF FFFF FFFF FFFF LINT 8 The maximum signed 64 bit
value (263 − 1)

9,007,199,254,740,992 0020 0000 0000 0000 - 8
The largest consecutive integer
in IEEE 754 double precision
(253)

4,294,967,295 FFFF FFFF DWORD,
UDINT 4 The maximum unsigned 32 bit

value (232 − 1)

2,147,483,647 7FFF FFFF DINT 4 The maximum signed 32 bit
value (231 − 1)

https://www.paypal.com/donate/?hosted_button_id=BKY97QYZYJJSY
http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=automation:coffee_3.png

2026/01/19 19:41 27/29 Simatic variable types

lamaPLC - http://lamaplc.com/

Decimal Hex TIA data
type Byte Description

16,777,216 0100 0000 - 4
The largest consecutive integer
in IEEE 754 single precision
(224)

65,535 FFFF WORD,
UINT 2 The maximum unsigned 16 bit

value (216 − 1)

32,767 7FFF INT 2 The maximum signed 16 bit
value (215 − 1)

255 FF BYTE 1 The maximum unsigned 8 bit
value (28 − 1)

127 7F SINT 1 The maximum signed 8 bit
value (27 − 1)

−128 80 SINT 2 Minimum signed 8 bit value
−32,768 8000 INT 2 Minimum signed 16 bit value
−2,147,483,648 8000 0000 DINT 4 Minimum signed 32 bit value
−9,223,372,036,854,775,808 8000 0000 0000 0000 LINT 8 Minimum signed 64 bit value
2026/01/16 12:37 · vamsan

TIA Datatypes

 List of data types used by Simatic S7. The page contains the more modern TIA
variable types as well as the earlier S7-classic types.

There are four data types in: Boolean, Text, Numeric, and Date/Time. Each data type
defines the format of information that can be entered into a data field and stored in
your database.

Datatyp Width
(bits) Range of values Examples S7-300/400 S7-1200 S7-1500

Binaries

BOOL (x)
→details

1
(S7-1500
optimized
1 Byte)

FALSE or TRUE
BOOL#0 or BOOL#1
BOOL#FALSE oder BOOL#TRUE

TRUE
BOOL#1
BOOL#TRUE

X X X

BYTE (b)
→details 8

B#16#00 .. B#16#FF
0 .. 255
2#0 .. 2#11111111

15,
BYTE#15,
B#15

X X X

WORD (w)
→details 16

W#16#0000 .. W#16#FFFF
0 .. 65.535
B#(0, 0) .. B#(255, 255)

55555,
WORD#55555,
W#555555

X X X

DWORD (dw)
→details 32 DW#16#0000 0000 .. DW#16#FFFF FFFF

0 .. 4,294,967,295
DW#16#DEAD BEEF
B#(111, 222, 255, 200) X X X

LWORD (lw)
→details 64

LW#16#0000 0000 0000 0000 ..
LW#16#FFFF FFFF FFFF FFFF
0 .. 18.446.744.073.709.551.615

LW#16#DEAD BEEF DEAD BEEF
B#(111, 222, 255, 200, 111, 222, 255, 200) - - X

Datatyp Width
(bits) Range of values Examples S7-300/400 S7-1200 S7-1500

Integers
SINT (si)
→details 8 -128 .. 127

(hex only positive) 16#0 .. 16#7F
+42, SINT#+42
16#1A, SINT#16#2A - X X

INT (i)
→details 16 -32.768 .. 32.767

(hex only positive) 16#0 .. 16#7FFF
+1234, INT#+3221
16#1ABC X X X

DINT (di)
→details 32

-2.147.483.648 .. +2.147.483.647
(hex only positive)
16#00000000 .. 16#7FFFFFFF

123456, DINT#123.456,
16#1ABC BEEF X X X

USINT (usi)
→details 8 0 .. 255

16#00 .. 16#FF
42, USINT#42
16#FF - X X

UINT (ui)
→details 16 0 .. 65.535

16#0000 .. 16#FFFF
12.345, UINT#12345
16#BEEF - X X

http://lamaplc.com/lib/exe/detail.php?id=automation%3As7_var&media=simatic:digi.png

Last update: 2026/01/19 13:36 automation:s7_var http://lamaplc.com/doku.php?id=automation:s7_var

http://lamaplc.com/ Printed on 2026/01/19 19:41

Datatyp Width
(bits) Range of values Examples S7-300/400 S7-1200 S7-1500

UDINT (udi)
→details 32 0 .. 4.294.967.295

16#00000000 .. 16#FFFF FFFF 1.234.567.890, UDINT#1234567890 - X X

LINT (li)
→details 64 -9.223.372.036.854.775.808 ..

+9.223.372.036.854.775.807
+1.234.567.890.123.456.789,
LINT#+1.234.567.890.123.456.789 - - X

ULINT (uli)
→details 64 0 .. 18.446.744.073.709.551.615 123.456.789.012.345,

ULINT#123.456.789.012.345 - - X

Datatyp Width
(bits) Range of values Examples S7-300/400 S7-1200 S7-1500

floating point numbers

REAL ®
→details 32

-3.402823e+38 .. -1.175 495e-38
..
+1.175 495e-38 .. +3.402823e+38

0.0, REAL#0.0
1.0e-13, REAL#1.0e-13 X X X

LREAL (lr)
→details 64

-1.7976931348623158e+308 ..
-2.2250738585072014e-308
..
+2.2250738585072014e-308 ..
+1.7976931348623158e+308

0.0, LREAL#0.0 - X X

Datatyp Width
(bits) Range of values Examples S7-300/400 S7-1200 S7-1500

Times
S5TIME (s5t)
→details 16 S5T#0H_0M_0S_0MS ..

S5T#2H_46M_30S_0MS S5T#10s, S5TIME#10s X - X

TIME (t)
→details 32 T#-24d20h31m23s648ms ..

T#+24d20h31m23s647ms
T#13d14h15m16s630ms,
TIME#1d2h3m4s5ms X X X

LTIME (lt)
→details 64

LT#-106751d23h47m16s854ms775us808ns
..
LT#+106751d23h47m16s854ms775us807ns

LT#1000d10h15m24s130ms152us15ns,
LTIME#200d2h2m1s8ms652us315ns - - X

Timer operations: IEC timers, TON (Generate on-delay), TOF (Generate off-delay), TP (Generate pulse), TONR (Time accumulator)

Datatyp Width
(bits) Range of values Examples S7-300/400 S7-1200 S7-1500

Counters
CHAR
→details 8 ASCII character set 'A', CHAR#'A' X X X

WCHAR (wc)
→details 16 Unicode character set WCHAR#'A' - X X

STRING (s)
→details

n+2
(Byte) 0 .. 254 characters (n) 'Name', STRING#'lamaPLC' X X X

WSTRING (ws)
→details

n+2
(Word) 0 .. 16382 characters (n) WSTRING#'lamaPLC' - X X

Counter operations: CTU (count up), CTD (count down), CTUD (count up and down)

Datatyp Width
(bits) Range of values Examples S7-300/400 S7-1200 S7-1500

Date & time
DATE (d)
→details 16 D#1990-01-01 .. D#2168-12-31 D#2020-08-14, DATE#2020-08-14 X X X

TOD (tod)
(TIME_OF_DAY)
→details

32 TOD#00:00:00.000 .. TOD#23:59:59.999 TOD#11:22:33.444,
TIME_OF_DAY#11:22:33.444 X X X

LTOD (ltod)
(LTIME_OF_DAY)
→details

64 LTOD#00:00:00.000000000 ..
LTOD#23:59:59.999999999

LTOD#11:22:33.444_555_111,
LTIME_OF_DAY#11:22:33.444_555_111 - - X

DT (dt)
(DATE_AND_TIME)
→details

64 Min.: DT#1990-01-01-0:0:0
Max.: DT#2089-12-31-23:59:59.999

DT#2020-08-14-2:44:33.111,
DATE_AND_TIME#2020-08-14-11:22:33.444 X - X

LDT (ldt)
(L_DATE_AND_TIME)
→details

64

Min.: LDT#1970-01-01-0:0:0.000000000,
16#0
Max.:
LDT#2262-04-11-23:47:16.854775807,
16#7FFF_FFFF_FFFF_FFFF

LDT#2020-08-14-1:2:3.4 - - X

DTL (dtl)
→details 96 Min.: DTL#1970-01-01-00:00:00.0

Max.: DTL#2554-12-31-23:59:59.999999999 DTL#2020-08-14-10:12:13.23 - X X

Datatyp Width
(bits) Range of values Examples S7-300/400 S7-1200 S7-1500

Pointers

POINTER (p)
→details 48

Symbolic: “DB”.“Tag”
Absolute:
P#10.0
P#DB4.DBX3.2

X - X

ANY (any)
→details 80

Symbolic:
“DB”.StructVariable.firstComponent
Absolut: P#DB11.DBX12.0 INT 3
P#M20.0 BYTE 10

X - X

http://lamaplc.com/doku.php?id=simatic:scl_commands_timer_counter#ctu
http://lamaplc.com/doku.php?id=simatic:scl_commands_timer_counter#ctd
http://lamaplc.com/doku.php?id=simatic:scl_commands_timer_counter#ctud

2026/01/19 19:41 29/29 Simatic variable types

lamaPLC - http://lamaplc.com/

Datatyp Width
(bits) Range of values Examples S7-300/400 S7-1200 S7-1500

VARIANT (var)
→details 0

Symbolic:
“Data_TIA_Portal”.
StructVariable.firstComponent
Absolute: %MW10
P#DB10.DBX10.0 INT 12

- X X

BLOCK_FB 0 - X - X
BLOCK_FC 0 - X - X
BLOCK_DB 0 - X - -
BLOCK_SDB 0 - X - -
VOID 0 - X X X
PLC_DATA_TYPE 0 - X X X

2026/01/06 13:34

TIA Coding of data types

The following table lists the coding of data types for the ANY pointer:

Hexadecimal code Data type Description
B#16#00 NIL Null pointer
B#16#01 BOOL Bits
B#16#02 BYTE bytes, 8 bits
B#16#03 CHAR 8-bit characters
B#16#04 WORD 16-bit words
B#16#05 INT 16-bit integers
B#16#06 DWORD 32-bit words
B#16#07 DINT 32-bit integers
B#16#08 REAL 32-bit floating-point numbers
B#16#0B TIME Time duration
B#16#0C S5TIME Time duration
B#16#09 DATE Date
B#16#0A TOD Date and time
B#16#0E DT Date and time
B#16#13 STRING Character string
B#16#17 BLOCK_FB Function block
B#16#18 BLOCK_FC Function
B#16#19 BLOCK_DB Data block
B#16#1A BLOCK_SDB System data block
B#16#1C COUNTER Counter
B#16#1D TIMER Timer
2026/01/16 12:40 · vamsan

From:
http://lamaplc.com/ - lamaPLC

Permanent link:
http://lamaplc.com/doku.php?id=automation:s7_var

Last update: 2026/01/19 13:36

http://lamaplc.com/
http://lamaplc.com/doku.php?id=automation:s7_var

	[Simatic variable types]
	Simatic variable types
	Bit & Byte
	DEAD_BEEF

	BYTE – WORD type variables
	INT type variables
	UINT type variables
	REAL type variables
	CHAR type variables
	Special characters
	STRING type variables
	TIME type variables
	S5TIME
	Array
	Array of struct
	Structure
	UDT
	OB, DB, FB, FC
	An example of program calls
	Data block (DB)
	DB Limits
	Instant vs global DB
	DB Properties
	Optimized DB
	Tags vs DB data
	Storing DB records in the load memory

	Direct/indirect addressing
	Direct addressing
	Slice addressing
	Pointer; indirect addressing
	ANY type
	TIA Coding of data types
	TIA Coding of the memory area

	Example of using the ANY type
	VARIANT versus ANY
	VARIANT type

	TIA Data type limits
	TIA Datatypes
	TIA Coding of data types

