2026/01/18 04:19 1/4 Direct/indirect addressing

Direct / indirect addressing

Addressing methods are mostly tied to variable types, not areas, so the following procedures apply to
both DB and Tag variables.

Direct addressing

Direct addressing in Simatic is typically symbolic addressing, meaning in the simplest case we
correspond two variables of the same type to each other:

fromReal : Real;
fromInt : Int;
toReal : Real;
toInt : Int;

#toInt := #fromInt;
#toReal := #fromReal;

If the types do not match, conversion will help us:

#toInt := REAL TO INT = #fromReal) ;

It is crucial to understand that conversion can lead to data loss. In the example above,
the REAL type can store much larger numbers and fractional parts, while the INT only
/1 handles smaller integers and rounds off fractions. When converting between variables
L% with different ranges, all values outside the smaller range should be considered. In this
case, rather than using an INT, a variable with a broader range should be selected
(example DINT, LINT).

Direct addressing is also applicable to STRUCTURE and ARRAY types, as long as both sides have
identical structures.

Another approach is direct addressing, which involves referring to sub-elements of a variable.
Although this method applies to a limited range of variables, it is a simple form of assignment. While
it isn't as straightforward as the S7-Classic AT command that many programmers prefer, it is at least
available:

Slice addressing

Slice addressing involves dividing a memory region, such as a byte or word, into smaller segments
like booleans. With S7-1200 and S7-1500, you can target specific parts within declared variables

lamaPLC - http://lamaplc.com/

Last
update:
2026/01/16
12:43

automation:direct_indirect_addressing http://lamaplc.com/doku.php?id=automation:direct_indirect_addressing&rev=1768567399

(only by byte, word, dword) and access segments of 1, 8, 16, or 32 bits.

lmlu mlru %X [0..31]
B3 B2 B1 BO %B[0..3]
HHHH EHEEAEHEEEEEEEAE S AR R EE B B R B R s
[Byte |
Word |
| DWord |
Examples:
Byte [=| | Bitvariable := byte variable.%x3;
| [] Word | Bit variable := word variable.%x11;
| B1 frd | Byte variable := word variable.%b1;

The following example is a SPLIT function that splits a WORD Input variable into bits:

// FC Input : inWord (Word)
// FC output: 16 variable bit@..bitl5 (Bool)
// splitting

#bit0 := #inWord.%X0;
#bitl := #inWord.%X1;
#bit2 := #inWord.%X2;
#bit3 := #inWord.%X3;
#bitd := #inWord.%X4;
#bit5 := #inWord.%X5;
#bitb6 := #inWord.%X6;
#bit7 := #inWord.%X7;
#bit8 := #inWord.%X8;
#bit9 := #inWord.%X9;
#bitA := #inWord.%X10;
#bitB := #inWord.%X11;

#bitC := #inWord.%X12;
#bitD := #inWord.%X13;
#bitE := #inWord.%X14;
#bitF := #inWord.%X15;

Pointer; indirect addressing

In the TIA Portal, there are two ways to perform indirect addressing or pointer referencing: the ANY
and the VARIANT. However, it is important to note that the S7-1200 series PLCs do not support the
ANY method. Using a pointer essentially involves moving a data block of a specific size to a memory

http://lamaplc.com/ Printed on 2026/01/18 04:19

http://lamaplc.com/lib/exe/detail.php?id=automation%3Adirect_indirect_addressing&media=automation:slice_1.png

2026/01/18 04:19 3/4 Direct/indirect addressing

area of the same size. This operation ignores the structure and variables within the data area, making
it a quick and useful method when applied carefully. However, careless use of this tool can be
very risky.

A key issue is that it doesn't handle the variables within the data being pointed to; for example, when
searching for errors with xref, these procedures are not visible to the compiler, which can lead to
difficult-to-detect errors caused by improper pointer use.

ANY type

Structure of the ANY Pointer (10 Bytes):

Name Length Description
Syntax ID 1 byte |Always 16#10 for S7
Data Type 1 byte Code for the type of data being pointed to (e.g., 16#02 for Byte, 16#04 for

Word

Repetition Factor|2 bytes [Number of elements of the specified data type

DB Numbe 2 bytes 'The number of the data block (0 if not in a DB)
Memory Area 1 byte |Code for the memory area (e.g., 16#84 for DB, 16#81 for Input)
Address 3 bytes |The start address of the data (bit and byte address)

TIA Coding of data types

The following table lists the coding of data types for the ANY pointer:

Hexadecimal code Data type |Description
B#16#00 NIL Null pointer
B#16#01 BOOL Bits

B#16#02 BYTE bytes, 8 bits
B#16#03 CHAR 8-bit characters
B#16#04 WORD 16-bit words
B#16#05 INT 16-bit integers
B#16#06 DWORD 32-bit words
B#16#07 DINT 32-bit integers
B#16#08 REAL 32-bit floating-point numbers
B#16+#0B TIME Time duration
B#16#0C S5TIME Time duration
B#16#09 DATE Date

B#16#0A TOD Date and time
B#16#0E DT Date and time
B#16#13 STRING Character string
B#16#17 BLOCK_FB |Function block
B#16#18 BLOCK FC |Function
B#16#19 BLOCK DB |Data block
B#16#1A BLOCK SDB|System data block
B#16#1C COUNTER |Counter

lamaPLC - http://lamaplc.com/

Last

update: automation:direct_indirect_addressing http://lamaplc.com/doku.php?id=automation:direct_indirect_addressing&rev=1768567399

2026/01/16
12:43

Hexadecimal code Data type Description

B#16#1D TIMER Timer

2026/01/16 12:40 - vamsan

From:
http://lamaplc.com/ - lamaPLC

Permanent link:

http://lamaplc.com/doku.php?id=automation:direct_indirect_addressing&rev=1768567399

Last update: 2026/01/16 12:43

http://lamaplc.com/

Printed on 2026/01/18 04:19

http://lamaplc.com/
http://lamaplc.com/doku.php?id=automation:direct_indirect_addressing&rev=1768567399

	[Direct / indirect addressing]
	[Direct / indirect addressing]
	[Direct / indirect addressing]
	Direct / indirect addressing
	Direct addressing
	Slice addressing
	Pointer; indirect addressing
	ANY type
	TIA Coding of data types

