
2026/01/18 02:25 1/3 Direct/indirect addressing

lamaPLC - http://lamaplc.com/

Direct / indirect addressing

Addressing methods are mostly tied to variable types, not areas, so the following procedures apply to
both DB and Tag variables.

Direct addressing

Direct addressing in Simatic is typically symbolic addressing, meaning in the simplest case we
correspond two variables of the same type to each other:

fromReal : Real;
fromInt : Int;
toReal : Real;
toInt : Int;
…
 
#toInt := #fromInt;
#toReal := #fromReal;

If the types do not match, conversion will help us:

#toInt := REAL_TO_INT(IN := #fromReal);

It is crucial to understand that conversion can lead to data loss. In the example above,
the REAL type can store much larger numbers and fractional parts, while the INT only
handles smaller integers and rounds off fractions. When converting between variables
with different ranges, all values outside the smaller range should be considered. In this
case, rather than using an INT, a variable with a broader range should be selected
(example DINT, LINT).

Direct addressing is also applicable to STRUCTURE and ARRAY types, as long as both sides have
identical structures.

Another approach is direct addressing, which involves referring to sub-elements of a variable.
Although this method applies to a limited range of variables, it is a simple form of assignment. While
it isn't as straightforward as the S7-Classic AT command that many programmers prefer, it is at least
available:

Slice addressing

Slice addressing involves dividing a memory region, such as a byte or word, into smaller segments
like booleans. With S7-1200 and S7-1500, you can target specific parts within declared variables



Last
update:
2026/01/15
16:09

automation:direct_indirect_addressing http://lamaplc.com/doku.php?id=automation:direct_indirect_addressing&rev=1768493366

http://lamaplc.com/ Printed on 2026/01/18 02:25

(only by byte, word, dword) and access segments of 1, 8, 16, or 32 bits.

The following example is a SPLIT function that splits a WORD Input variable into bits:

// FC Input : inWord (Word)
// FC output: 16 variable bit0..bit15 (Bool)
// splitting
#bit0 := #inWord.%X0;
#bit1 := #inWord.%X1;
#bit2 := #inWord.%X2;
#bit3 := #inWord.%X3;
#bit4 := #inWord.%X4;
#bit5 := #inWord.%X5;
#bit6 := #inWord.%X6;
#bit7 := #inWord.%X7;
#bit8 := #inWord.%X8;
#bit9 := #inWord.%X9;
#bitA := #inWord.%X10;
#bitB := #inWord.%X11;
#bitC := #inWord.%X12;
#bitD := #inWord.%X13;
#bitE := #inWord.%X14;
#bitF := #inWord.%X15;

http://lamaplc.com/lib/exe/detail.php?id=automation%3Adirect_indirect_addressing&media=automation:slice_1.png


2026/01/18 02:25 3/3 Direct/indirect addressing

lamaPLC - http://lamaplc.com/

From:
http://lamaplc.com/ - lamaPLC

Permanent link:
http://lamaplc.com/doku.php?id=automation:direct_indirect_addressing&r
ev=1768493366

Last update: 2026/01/15 16:09

http://lamaplc.com/
http://lamaplc.com/doku.php?id=automation:direct_indirect_addressing&rev=1768493366
http://lamaplc.com/doku.php?id=automation:direct_indirect_addressing&rev=1768493366

	[Direct / indirect addressing]
	[Direct / indirect addressing]
	[Direct / indirect addressing]
	Direct / indirect addressing
	Direct addressing
	Slice addressing





