
2026/01/16 21:48 1/5 Direct/indirect addressing

lamaPLC - https://lamaplc.com/

Direct/indirect addressing

Addressing methods are mostly tied to variable types, not areas, so the following procedures apply to
both DB and Tag variables.

Direct addressing

Direct addressing in Simatic is typically symbolic addressing, meaning in the simplest case we
correspond two variables of the same type to each other:

fromReal : Real;
fromInt : Int;
toReal : Real;
toInt : Int;
…

#toInt := #fromInt;
#toReal := #fromReal;

If the types do not match, conversion will help us:

#toInt := REAL_TO_INT(IN := #fromReal);

It is crucial to understand that conversion can lead to data loss. In the example above,
the REAL type can store much larger numbers and fractional parts, while the INT only
handles smaller integers and rounds off fractions. When converting between variables
with different ranges, all values outside the smaller range should be considered. In this
case, rather than using an INT, a variable with a broader range should be selected
(example DINT, LINT).

Direct addressing is also applicable to STRUCTURE and ARRAY types, provided both sides have
identical structures.

Another approach is direct addressing, which involves referring to a variable's sub-elements. Although
this method applies to a limited range of variables, it is a simple form of assignment. While it isn't as
straightforward as the S7-Classic AT command that many programmers prefer, it is at least available:

Slice addressing

Slice addressing involves dividing a memory region, such as a byte or a word, into smaller segments,
such as booleans. With S7-1200 and S7-1500, you can target specific parts within declared variables
(only by byte, word, dword) and access segments of 1, 8, 16, or 32 bits.

Last update: 2026/01/16
17:24 automation:direct_indirect_addressing https://lamaplc.com/doku.php?id=automation:direct_indirect_addressing

https://lamaplc.com/ Printed on 2026/01/16 21:48

The following example is a SPLIT function that splits a WORD Input variable into bits:

// FC Input : inWord (Word)
// FC output: 16 variable bit0..bit15 (Bool)
// splitting
#bit0 := #inWord.%X0;
#bit1 := #inWord.%X1;
#bit2 := #inWord.%X2;
#bit3 := #inWord.%X3;
#bit4 := #inWord.%X4;
#bit5 := #inWord.%X5;
#bit6 := #inWord.%X6;
#bit7 := #inWord.%X7;
#bit8 := #inWord.%X8;
#bit9 := #inWord.%X9;
#bitA := #inWord.%X10;
#bitB := #inWord.%X11;
#bitC := #inWord.%X12;
#bitD := #inWord.%X13;
#bitE := #inWord.%X14;
#bitF := #inWord.%X15;

Pointer; indirect addressing

In the TIA Portal, there are two ways to perform indirect addressing or pointer referencing: the ANY
and the VARIANT. However, it is important to note that the S7-1200 series PLCs do not support the
ANY method. Using a pointer essentially involves moving a data block of a specific size to a memory
area of the same size. This operation ignores the structure and variables within the data area, making
it a quick and useful method when applied carefully. However, careless use of this tool can be
very risky.

https://lamaplc.com/lib/exe/detail.php?id=automation%3Adirect_indirect_addressing&media=automation:slice_1.png

2026/01/16 21:48 3/5 Direct/indirect addressing

lamaPLC - https://lamaplc.com/

A key issue is that it doesn't handle the variables within the data being pointed to; for example, when
searching for errors with xref, these procedures are not visible to the compiler, which can lead to
difficult-to-detect errors caused by improper pointer use.

ANY type

Structure of the ANY Pointer (10 Bytes):

Name Length Description
Syntax ID 1 byte Always 16#10 for S7

Data Type 1 byte Code for the type of data being pointed to (e.g., 16#02 for Byte; see
below in the table “TIA Coding of data types”

Repetition Factor 2 bytes Number of elements of the specified data type
DB Numbe 2 bytes The number of the data block (0 if not in a DB)

Memory Area 1 byte Code for the memory area (e.g., 16#84 for DB; see below in the table
“TIA Coding of the memory area”)

Address 3 bytes The start address of the data (bit and byte address)

TIA Coding of data types

The following table lists the coding of data types for the ANY pointer:

Hexadecimal code Data type Description
B#16#00 NIL Null pointer
B#16#01 BOOL Bits
B#16#02 BYTE bytes, 8 bits
B#16#03 CHAR 8-bit characters
B#16#04 WORD 16-bit words
B#16#05 INT 16-bit integers
B#16#06 DWORD 32-bit words
B#16#07 DINT 32-bit integers
B#16#08 REAL 32-bit floating-point numbers
B#16#0B TIME Time duration
B#16#0C S5TIME Time duration
B#16#09 DATE Date
B#16#0A TOD Date and time
B#16#0E DT Date and time
B#16#13 STRING Character string
B#16#17 BLOCK_FB Function block
B#16#18 BLOCK_FC Function
B#16#19 BLOCK_DB Data block
B#16#1A BLOCK_SDB System data block
B#16#1C COUNTER Counter
B#16#1D TIMER Timer
2026/01/16 12:40 · vamsan

Last update: 2026/01/16
17:24 automation:direct_indirect_addressing https://lamaplc.com/doku.php?id=automation:direct_indirect_addressing

https://lamaplc.com/ Printed on 2026/01/16 21:48

TIA Coding of the memory area

The following table lists the coding of the memory areas for the ANY pointer:

Hexadecimal code Area Description
B#16#80 P I/O
B#16#81 I Memory area of inputs
B#16#82 Q Memory area of outputs
B#16#83 M Memory area of bit memory
B#16#84 DBX Data block
B#16#85 DIX Instance data block
B#16#86 L Local data
B#16#87 V Previous local data
2026/01/16 12:51 · vamsan

Example of using the ANY type

The pointer with the ANY type is most frequently used with the BLKMOV command, which copies data
from one area to another indirectly. In the example below, the created dataset is transferred to one of
three mobile data areas based on the location of the variable “assHMI”.Panel1ASS points:

CASE "assHMI".Panel1ASS OF
 1: // ASS1 data to disp 1
 #state := BLKMOV(SRCBLK := P#db108.dbx0.0 BYTE 72, DSTBLK =>
P#db108.dbx216.0 BYTE 72);
 2: // ASS1 data to disp 2
 #state := BLKMOV(SRCBLK := P#db108.dbx72.0 BYTE 72, DSTBLK =>
P#db108.dbx216.0 BYTE 72);
 3: // ASS1 data to disp 3
 #state := BLKMOV(SRCBLK := P#db108.dbx144.0 BYTE 72, DSTBLK =>
P#db108.dbx216.0 BYTE 72);
 ELSE // Statement section ELSE
 ;
END_CASE;

VARIANT versus ANY

ANY is a fixed 10-byte structure that references an absolute memory address.
VARIANT is a type-safe pointer that preserves the original data type information and enables
symbolic addressing without the need for fixed memory location overhead.
The ANY is an older type, already available in the S300 / 400 series.

* The ANY can only be used with the S7-1500, whereas VARIANT are accessible on all S7 models.

2026/01/16 21:48 5/5 Direct/indirect addressing

lamaPLC - https://lamaplc.com/

VARIANT type

A VARIANT type parameter is a pointer that can reference various data types beyond a simple
instance. This pointer can be an object of a basic data type like INT or REAL, or it can be a STRING,
DTL, ARRAY of STRUCT, UDT, or an ARRAY of UDT. The VARIANT pointer can also recognize structures
and point directly to individual members of those structures. An operand of VARIANT type does not
consume space in the instance data block or work memory but does require memory on the CPU.

Directly assigning a tag to a VARIANT, like myVARIANT := #Variable, is not
possible.
Direct reading or writing of a signal from an I/O input or output is only
possible with an S7-1500 module.
You can only reference a complete data block if it was originally created
from a user-defined data type (UDT).

From:
https://lamaplc.com/ - lamaPLC

Permanent link:
https://lamaplc.com/doku.php?id=automation:direct_indirect_addressing

Last update: 2026/01/16 17:24

https://lamaplc.com/
https://lamaplc.com/doku.php?id=automation:direct_indirect_addressing

	[Direct/indirect addressing]
	[Direct/indirect addressing]
	[Direct/indirect addressing]
	Direct/indirect addressing
	Direct addressing
	Slice addressing
	Pointer; indirect addressing
	ANY type
	TIA Coding of data types
	TIA Coding of the memory area
	Example of using the ANY type
	VARIANT versus ANY
	VARIANT type

