
2026/01/09 03:22 1/3 Bit & Byte

lamaPLC - http://lamaplc.com/

Bit & Byte

 The Bit is the simplest form; it's a signal that can be true or false, with its official English
equivalents being “TRUE” or “FALSE,” or even simply 0 or 1. There is no 2 anymore because
two is represented by 10 according to the rules of the binary number system, which in this
case is not ten but one zero. To clearly distinguish this, we write numbers in the decimal
number system “just like that,” for example, 10. If this is a number in the binary number
system, then we denote it as 2#10.

The decimal number system stems from the fact that we have ten fingers and, historically, used them
to perform all our calculations. If we had, say, three fingers on each hand, meaning six in total, then
we would be using the six-number system now. Computing is based on the above yes-or-no logic, i.e.,
the binary number system, which is why we often use the hexadecimal number system. I'll talk about
that later. Let's first look at the binary number system through a byte to see how it works.

A byte is a variable type consisting of 8 bits. The value stored in it must be somewhere between 0 and
255, depending on the bit positions. The example below may help you understand this a little:

Let's take the bit sequence “01010110” as an example, which fills the above byte. The bits of a byte
are always numbered from right to left; position 0 is always on the right. Each position corresponds to
a given power of the binary number system; position 4 corresponds to 24 = 16. If there is a 0 in this
position in the example, then it does not “count”; if there is a one, then its value “counts”, and as can
be seen in the rows marked in green, the sum of the “counting” rows gives the current decimal value
of the byte, 86. That is, 2#01010110 = 86.

Therefore, the byte reaches its maximum value when all bits are set to 1. It can be calculated that
2#11111111 = 255. The byte data type holds values between 0 and 255.

In computing, we use the base-10 number system, as well as the binary and base-16 number
systems. The values ​​described in it are called hexadecimal numbers and are denoted by the prefix
“16#” or sometimes “hex#”. Sometimes the hexadecimal number system is simply the hash, like

http://lamaplc.com/lib/exe/detail.php?id=automation%3Abit_byte&media=automation:10.png
http://lamaplc.com/lib/exe/detail.php?id=automation%3Abit_byte&media=automation:byte_pos_en.png


Last update: 2026/01/06 17:59 automation:bit_byte http://lamaplc.com/doku.php?id=automation:bit_byte

http://lamaplc.com/ Printed on 2026/01/09 03:22

this: “#ABCD”. The hexadecimal number system changes order of magnitude at 16, meaning that a
position can contain a value between 0 and 15. This can be very confusing in the base 10 number
system, so the two-digit positions are denoted by letters:

10 = 16#A
11 = 16#B
12 = 16#C
13 = 16#D
14 = 16#E
15 = 16#F

If a byte reaches its maximum value, meaning every bit is set to “1”, then: 2#11111111 = 255 =
16#FF

If we calculate: F, i.e., “15” * 16 + “15” = 255

In some ways, this can make our lives easier, because if we see a value of “16#FF” somewhere, or a
longer series of these, for example “16#FFFF_FFFF”, then we can suspect that we have reached the
maximum value of one of the variable types. I would also like to mention the 8-bit, i.e., octal number
system, it sometimes still occurs here and there, for example, in the case of numerical symbols, but
only rarely, we don’t really use it.

DEAD_BEEF

Just as “FF” is likely to represent the maximum of a given variable type, dead beef is a test value
designation, a play on letters. The letters of the hexadecimal number system are a, b, c, d, e, f.
#dead_beef contains all of them except c, so it is helpful for testing. The Windows calculator,
switched to programmer mode, is very helpful for hex-dec-bin conversions. From this, it turns out that
the value of 16#dead_beef is:

2026/01/06 15:01

More information: TIA Datatypes: S7 data types summary table

http://lamaplc.com/lib/exe/detail.php?id=automation%3Abit_byte&media=automation:dead_beef.png


2026/01/09 03:22 3/3 Bit & Byte

lamaPLC - http://lamaplc.com/

From:
http://lamaplc.com/ - lamaPLC

Permanent link:
http://lamaplc.com/doku.php?id=automation:bit_byte

Last update: 2026/01/06 17:59

http://lamaplc.com/
http://lamaplc.com/doku.php?id=automation:bit_byte

	[Bit & Byte]
	[Bit & Byte]
	[Bit & Byte]
	[Bit & Byte]
	Bit & Byte
	DEAD_BEEF





