
2026/01/12 06:06 1/6 LamaPLC: Arduino code collection

lamaPLC - http://lamaplc.com/

LamaPLC: Arduino code collection

Frequently used code collection

TON

 // var def block
 unsigned long startMillis, currentMillis; // current and start time
 const unsigned long period = 2000; // the value is a number of
milliseconds

 // code block
 currentMillis = millis(); // get the current "time"
(actually the number of milliseconds since the program started)
 if (currentMillis - startMillis >= period) // test whether the period
has elapsed
 {
 startMillis = currentMillis; // time update
 // after time has elapsed the call
 // ...
 }

check serial monitor

 // code in setup()
 Serial.begin(9600);

 while (!Serial) {
 ; // wait for serial port to connect. Needed for native USB port only
 }
 Serial.println("Serial monitor OK");

Converting code collection

Float to char[]

// lib init (optional)
#include "avr/dtostrf.h"
// converting
float a;

Last update: 2025/08/23 21:57 arduino:code_collection http://lamaplc.com/doku.php?id=arduino:code_collection

http://lamaplc.com/ Printed on 2026/01/12 06:06

char sendValue[10];
dtostrf (a, 10, 8, sendValue); // float_value, min_width,
num_digits_after_decimal, where_to_store_string

Int to char[]

int a;
char sendValue[10];
itoa (i,sendValue,10); // int value, char * str, int base
// base: Numerical base used to represent the value as a string, between 2
and 36, where 10 means decimal base, 16 hexadecimal, 8 octal, and 2 binary

String to char[]

char place[20];
strcpy(place,"Home");

Modbus code collection

Convert 2 registers to float

call: [float] = modbus_2regs_2_float([1.register], [2.register])

float modbus_2regs_2_float(uint16_t a, uint16_t b) {
 uint32_t combined = ((uint32_t)a << 16) | b;
 float f;
 memcpy(&f, &combined, sizeof f);
 return f;
}

call: [float] = modbus_2regs_2_float([first register])

float modbus_2regs_2_float(uint16_t addr) {
 uint16_t a = node.getResponseBuffer(addr);
 uint16_t b = node.getResponseBuffer(addr+1);
 uint32_t combined = ((uint32_t)a << 16) | b;
 float f;
 memcpy(&f, &combined, sizeof f);
 return f;
}

http://www.opengroup.org/onlinepubs/009695399/functions/itoa.html
http://www.opengroup.org/onlinepubs/009695399/functions/strcpy.html
http://www.opengroup.org/onlinepubs/009695399/functions/memcpy.html
http://www.opengroup.org/onlinepubs/009695399/functions/memcpy.html

2026/01/12 06:06 3/6 LamaPLC: Arduino code collection

lamaPLC - http://lamaplc.com/

Convert float 2 registers

def: int16_t regs[2];
call: modbus_set_float([float], regs);
back: register1: regs[1], register2: [regs[2]

 void modbus_set_float(float f, uint16_t *dest)
 {
 uint32_t i = 0;

 memcpy(&i, &f, sizeof(uint32_t));
 dest[0] = (uint16_t)i;
 dest[1] = (uint16_t)(i >> 16);
 }

Source: https://docs.ros.org/en/melodic/api/libmodbus/html/modbus-data_8c.html

Convert 2 registers to int32

uint32_t make_32bit_word(uint16_t hi_word, uint16_t lo_word)
{
 uint16_t words_16bit[2] = {hi_word, lo_word};
 uint32_t word_32bit = 0;

 memcpy(&word_32bit, words_16bit, 4);

 return word_32bit;
}

int32 convert direct to float by division by a thousand:

float make_float_32bit_word(uint16_t hi_word, uint16_t lo_word)
{
 uint16_t words_16bit[2] = {hi_word, lo_word};
 uint32_t word_32bit = 0;
 float back;

 memcpy(&word_32bit, words_16bit, 4);
 back = word_32bit / 1000.0;
 return back;
}

call: [float] = make_float_32bit_word([first reg])

float make_float_32bit_word(uint16_t addr)
{

http://www.opengroup.org/onlinepubs/009695399/functions/memcpy.html
https://docs.ros.org/en/melodic/api/libmodbus/html/modbus-data_8c.html
http://www.opengroup.org/onlinepubs/009695399/functions/memcpy.html
http://www.opengroup.org/onlinepubs/009695399/functions/memcpy.html

Last update: 2025/08/23 21:57 arduino:code_collection http://lamaplc.com/doku.php?id=arduino:code_collection

http://lamaplc.com/ Printed on 2026/01/12 06:06

 uint16_t words_16bit[2];
 words_16bit[1] = node.getResponseBuffer(addr);
 words_16bit[0] = node.getResponseBuffer(addr+1);
 uint32_t word_32bit = 0;
 float back;

 memcpy(&word_32bit, words_16bit, 4);
 back = word_32bit / 1000.0;
 return back;
}

Float to / from one register

Note: The maximum value of the int16 type is 32767, so in this format only the value range 0 ..
327.67 can be stored with 2 decimal places!

// float 2 reg
holdingRegs[REG_HUM] = (int16_t)(Humidity * 100);
// back one reg to float
float Humidity = holdingRegs[REG_HUM] / 100.0;

Modbus #define conversions

#define MODBUS_GET_HIGH_BYTE(data) (((data) >> 8) & 0xFF)
#define MODBUS_GET_LOW_BYTE(data) ((data) & 0xFF)
#define MODBUS_GET_INT64_FROM_INT16(tab_int16, index)
\
 (((int64_t) tab_int16[(index)] << 48) | ((int64_t) tab_int16[(index) +
1] << 32) | \
 ((int64_t) tab_int16[(index) + 2] << 16) | (int64_t) tab_int16[(index)
+ 3])
#define MODBUS_GET_INT32_FROM_INT16(tab_int16, index) \
 (((int32_t) tab_int16[(index)] << 16) | (int32_t) tab_int16[(index) +
1])
#define MODBUS_GET_INT16_FROM_INT8(tab_int8, index) \
 (((int16_t) tab_int8[(index)] << 8) | (int16_t) tab_int8[(index) + 1])
#define MODBUS_SET_INT16_TO_INT8(tab_int8, index, value) \
 do { \
 ((int8_t *) (tab_int8))[(index)] = (int8_t) ((value) >> 8); \
 ((int8_t *) (tab_int8))[(index) + 1] = (int8_t) (value); \
 } while (0)
#define MODBUS_SET_INT32_TO_INT16(tab_int16, index, value) \
 do { \
 ((int16_t *) (tab_int16))[(index)] = (int16_t) ((value) >> 16); \
 ((int16_t *) (tab_int16))[(index) + 1] = (int16_t) (value); \
 } while (0)
#define MODBUS_SET_INT64_TO_INT16(tab_int16, index, value)

http://www.opengroup.org/onlinepubs/009695399/functions/memcpy.html

2026/01/12 06:06 5/6 LamaPLC: Arduino code collection

lamaPLC - http://lamaplc.com/

\
 do {
\
 ((int16_t *) (tab_int16))[(index)] = (int16_t) ((value) >> 48);
\
 ((int16_t *) (tab_int16))[(index) + 1] = (int16_t) ((value) >> 32);
\
 ((int16_t *) (tab_int16))[(index) + 2] = (int16_t) ((value) >> 16);
\
 ((int16_t *) (tab_int16))[(index) + 3] = (int16_t) (value);
\
 } while (0)

Modbus messages

bool getResultMsg(uint8_t result)
{
 String tmpstr2;

 switch (result) {
 case node.ku8MBSuccess:
 return true;
 break;
 case node.ku8MBIllegalFunction:
 tmpstr2 = "Illegal Function";
 break;
 case node.ku8MBIllegalDataAddress:
 tmpstr2 = "Illegal Data Address";
 break;
 case node.ku8MBIllegalDataValue:
 tmpstr2 = "Illegal Data Value";
 break;
 case node.ku8MBSlaveDeviceFailure:
 tmpstr2 = "Slave Device Failure";
 break;
 case node.ku8MBInvalidSlaveID:
 tmpstr2 = "Invalid Slave ID";
 break;
 case node.ku8MBInvalidFunction:
 tmpstr2 = "Invalid Function";
 break;
 case node.ku8MBResponseTimedOut:
 tmpstr2 = "Response Timed Out";
 break;
 case node.ku8MBInvalidCRC:
 tmpstr2 = "Invalid CRC";
 break;
 default:
 tmpstr2 = "Unknown error: " + String(result);

Last update: 2025/08/23 21:57 arduino:code_collection http://lamaplc.com/doku.php?id=arduino:code_collection

http://lamaplc.com/ Printed on 2026/01/12 06:06

 break;
 }
 Serial.println(tmpstr2);
 return false;
}

General code collection

MAC random generator

Generate random MAC using pseudo random generator, bytes 0, 1 and 2 are static (MAC_START),
bytes 3, 4 and 5 are generated randomly

void generateMac() {
 // Marsaglia algorithm from https://github.com/RobTillaart/randomHelpers
 seed1 = 36969L * (seed1 & 65535L) + (seed1 >> 16);
 seed2 = 18000L * (seed2 & 65535L) + (seed2 >> 16);
 uint32_t randomBuffer = (seed1 << 16) + seed2; /* 32-bit random */
 memcpy(data.mac, MAC_START, 3); // set first 3 bytes
 for (byte i = 0; i < 3; i++) {
 data.mac[i + 3] = randomBuffer & 0xFF; // random last 3 bytes
 randomBuffer >>= 8;
 }
}

This page has been accessed for: Today: 1, Until now: 104

From:
http://lamaplc.com/ - lamaPLC

Permanent link:
http://lamaplc.com/doku.php?id=arduino:code_collection

Last update: 2025/08/23 21:57

http://www.opengroup.org/onlinepubs/009695399/functions/memcpy.html
http://lamaplc.com/
http://lamaplc.com/doku.php?id=arduino:code_collection

	LamaPLC: Arduino code collection
	Frequently used code collection
	TON
	check serial monitor

	Converting code collection
	Float to char[]
	Int to char[]
	String to char[]

	Modbus code collection
	Convert 2 registers to float
	Convert float 2 registers
	Convert 2 registers to int32
	Float to / from one register
	Modbus #define conversions
	Modbus messages

	General code collection
	MAC random generator

