
2026/01/17 00:34 1/14 LamaPLC: Arduino basic

lamaPLC - http://lamaplc.com/

LamaPLC: Arduino basic

 Arduino is an open-source hardware and software company, project,
and user community that designs and manufactures single-board
microcontrollers and microcontroller kits for building digital devices. Its
hardware products are licensed under a CC BY-SA license. In contrast,
the software is licensed under the GNU Lesser General Public License
(LGPL) or the GNU General Public License (GPL), allowing anyone to
manufacture Arduino boards and distribute the software. Arduino
boards are available commercially from the official website or through
authorized distributors.

Arduino board designs use a variety of microprocessors and controllers.
The boards are equipped with sets of digital and analog input/output (I/O) pins that can be interfaced
with various expansion boards ('shields'), breadboards (for prototyping), and other circuits. The
boards feature serial communications interfaces, including Universal Serial Bus (USB) on some
models, which are also used for loading programs. Microcontrollers can be programmed using the C
and C++ programming languages, utilizing a standard API known as the Arduino Programming
Language, which is inspired by the Processing language and used in conjunction with a modified
version of the Processing IDE.

A comparison of the technical data of some Arduino boards

Type chip CPU
speed

Power
supply

Operation
voltage

Digital
number
of pins
(pwm
pins)

Analog
number
of pins

Flash
memory

SRAM
memory

EEPROM
size Extras

Arduino Uno
R3 ATmega328P 16

MHz 6..20V 5V 14 (6) 6 32 KB 2 KB 1 KB -

UNO WiFi
Rev2 ATmega4809 16

MHz 6..20 V 5V 14 (6) 6 48 KB 6,144
Bytes

256
Bytes

WIFI;
Bluetooth
LE

UNO R4 WiFi
(ESP32-S3)

Renesas
RA4M1
(Arm Cortex-
M4)

48
MHz 6..24 V 5V 14 (6) 6 256 kB 32 kB 8 kB

WIFI;
Bluetooth;
UART, I²C,
SPI, CAN;
USB-C port;
DAC (12
Bit); OP
AMP; LED
matrix; HID
support

UNO R4
Minima

Renesas
RA4M1
(Arm Cortex-
M4)

48
MHz 6..24 V 5V 14 (6) 6 256 kB 32 kB 8 kB

UART, I²C,
SPI, CAN;
USB-C port;
DAC (12
Bit); OP
AMP; SWD

Arduino
Mega2560 ATmega2560 16

MHz 6..20V 5V 54 (15) 16 256 KB 8 KB 4 KB -

http://lamaplc.com/lib/exe/detail.php?id=arduino%3Aarduino_basic&media=arduino:arduino_mega_and_ethernet_1.png

Last update: 2025/09/23 22:07 arduino:arduino_basic http://lamaplc.com/doku.php?id=arduino:arduino_basic

http://lamaplc.com/ Printed on 2026/01/17 00:34

Type chip CPU
speed

Power
supply

Operation
voltage

Digital
number
of pins
(pwm
pins)

Analog
number
of pins

Flash
memory

SRAM
memory

EEPROM
size Extras

Arduino Giga
R1 WiFi

STM32H747XI
Dual Core
(Cortex® M7-
Kern)

480
MHz 6..24 V 3,3 V 76 (13) 12 2 MB 1 MB -

Wi-Fi®
802.11b/g/n
65 Mbps
Bluetooth®
Low Energy
Micro UFL
connector
4x UART
3x I²C
2x SPI
1x CAN

Arduino Due
AT91SAM3X8E
SAM3X8E ARM
Cortex-M3

84
MHz 9 V DC 3,3 V 54 (12) 12 512 KB 96 KB -

USB
USB OTG
4x UART
1x CAN

Arduino
Nano

3.x:
ATmega328,
2.x:
ATmega168

16
MHz 7..12V 5V 14 (6) 8 32 KB

16 KB
2 KB
1 KB

1 KB
512 Byte

Mini-B USB
connector

Arduino
Micro ATmega32u4 16

MHz 7..12V 5V 20 (7) 12 32 KB 2.5 KB 1 KB
5 hardware
interrupts,
full speed
USB

Keyes Pro
Micro ATmega32u4 8 MHz 7..9V 3.3V 12 (5) 4 32 KB 2.5 KB 1 KB

5 hardware
interrupts,
full speed
USB

Pro Micro 5V ATmega32u4 16
MHz 7..9V 5V 12 (5) 4 32 KB 2.5 KB 1 KB -

Arduino Mini ATmega328P
3,3V:
8MHz
5V: 16
MHz

6..20V 3,3V
5V 14 (6) 8 32 KB 2 KB 1 KB

2 hardware
interrupts,
no USB port

STM32F103 STM32 32-bit
Arm Cortex

72
MHz 5V 2.7V..3.6V 16 16 64 KB 20 KB -

USART / I2C
/ SPI / USB /
CAN / DMA

STM32F401 STM32 32-bit
Arm Cortex

25
MHz 5V 2.7V..3.6V 16 16 256 KB 64 KB -

USART / I2C
/ SPI / USB /
CAN / DMA

Wemos D1 ESP8266EX- 9..12V 3.3V 11 (11) 1 4 KB 2 KB 1 KB integrated
ESP8266

Duemilanove ATmega168
ATmega328- 6..20V 5V 14 (6) 6 16KB

32KB 1KB 512 byte
1KB -

Digispark - - - 5V 14 10 16KB 2KB 1KB -
RoboRED - - - 5V/3.3V 14 6 32KB 2KB 1KB -
ATmega1280 ATmega1280 - 5V 54 16 128KB 8KB 4KB -
Arduino
Leonardo ATmega32u4 16

MHz 5V 20 (7) 12 32KB 2.5KB 1K -

Arduino Due - - 3.3V 54 12 512KB 96K - -
ChipKIT
Max32 Diligent - 3.3V 83 16 512KB 128KB - -

2026/01/17 00:34 3/14 LamaPLC: Arduino basic

lamaPLC - http://lamaplc.com/

Type chip CPU
speed

Power
supply

Operation
voltage

Digital
number
of pins
(pwm
pins)

Analog
number
of pins

Flash
memory

SRAM
memory

EEPROM
size Extras

Arduino MKR
ZERO

SAMD21
Cortex®-M0+
32bit low
power ARM
MCU

48
MHz 5V 3.3V 22

7 input
+ 1
output

256 KB 32 KB no

I²S bus &
SD for
sound,
music &
digital
audio data

Arduino MKR
FOX 1200

SAMD21
Cortex®-M0+
32bit low
power ARM
MCU

48
MHz 5V 3.3V 8

7 input
+ 1
output

256 KB 32 KB no

Wifi on
board: 868
MHz
Sigfox:
Smart RF
ATA8520

Memory types of Arduino boards

Flash memory

This is considered the main memory of Arduinos; it stores the downloaded program and preserves its
content even after being switched off. In other words, it is sufficient to download the program here
only once, as it restarts itself every time it is switched on again. During programming, we cannot rely
on the entire memory, as the download program (bootloader) and various communications protocols
also occupy parts of it.

In addition, the downloaded libraries can also occupy a significant amount of space, so even with a 32
KB memory by default, we can expect only 24-30 KB (without libraries).

Additionally, the flash memory cannot be rewritten indefinitely; its maximum number of write cycles
is limited to 100,000. This is enough to store a program rewritten 10 times a day for about 27 years
without any problems.

http://lamaplc.com/doku.php?id=arduino:arduino_family_mkr#mkr_zero
http://lamaplc.com/doku.php?id=arduino:arduino_family_mkr#mkr_zero
http://lamaplc.com/doku.php?id=arduino:arduino_family_mkr#mkr_fox_1200
http://lamaplc.com/doku.php?id=arduino:arduino_family_mkr#mkr_fox_1200

Last update: 2025/09/23 22:07 arduino:arduino_basic http://lamaplc.com/doku.php?id=arduino:arduino_basic

http://lamaplc.com/ Printed on 2026/01/17 00:34

SRAM

static random-access memory

Simply put, SRAM stores the internal variables defined in the program. SRAM, in contrast to flash
memory, does not retain its contents in a power-free state. Therefore, after each power-on, the
program redefines the variables, and they are transferred to the SRAM with their default values
determined there.

EEPROM

Electrically Erasable Programmable Read-Only Memory

EEPROM is the non-volatile variable memory of boards. This, similarly to Flash, preserves its content
even when it is turned off; however, like Flash, it is only certified for 100,000 write cycles. Therefore,
it is not particularly suitable for cyclic data writing, for example. Additionally, it's slightly slower to
handle than regular SRAM.
Due to these technical characteristics, the EEPROM can be used for the following functions:

storage of configuration(s).
saving initial settings
save counters, values, and collected values (e.g., operating hours counter) independent of
restarts

Different Arduino boards have different EEPROM sizes:

ATmega168: 512 Bytes
ATmega8: 512 Bytes
ATmega328P: 1024 Byte
ATmega32U4: 1024 Bytes
ATmega1280: 4096 Bytes
ATmega2560: 4096 Bytes

When writing to the EEPROM memory, Arduino specifies two parameters: the address and value. Each
byte can hold a value between 0 .. 255 (byte-wise):

EEPROM.write (2,244); // write value "244" to byte address 2
val = EEPROM.read (10); // read EEprom arrdess 10

Arduino IDE

2026/01/17 00:34 5/14 LamaPLC: Arduino basic

lamaPLC - http://lamaplc.com/

 The Arduino IDE is a development
system written in Java, with which we can
write programs for the Arduino, compile
and debug them, and then download
them to the cards. The download is most
often performed via the USB port, which
is located on almost every Arduino board.
However, it is also possible to download
via ISP or OTA, if the given board
supports these options.
Arduinos have a pre-flashed bootloader,
which allows downloading of code without
external hardware, simply via the STK500
protocol.

If necessary, the above bootloader can be
bypassed using the ICSP (In-Circuit Serial
Programming).

Of course, we have many options for
programming Arduinos outside of the
rather inexpensive (but efficient and free) Arduino IDE. For example, Visual Studio can also be used
for this purpose after installing an Arduino plugin.

Arduino OTA

Over the Air
The Arduino also gives you the option to download programs via wifi or even an Ethernet shield. ESP
modules (ESP8266 or ESP32) offer a perfect opportunity to exploit this function, which can be directly
integrated with Arduino boards. Thus, most of the implementation of downloading via Wifi is carried
out by these modules.

Arduino API

Application Programming Interface
The functionality of Arduino can be extended through the library system. The use of libraries requires
memory, but with careful selection, the memory load can be well optimized, and a significant portion
of the programming can be saved by utilizing them. There are standard libraries, such as Wire,
AVR_C, and String, but a huge number of well-developed libraries are also available for download from
GitHub. When describing the sensors, I almost always refer to the GitHub libraries.

Arduino Bootloader

A special program preloaded on Arduino Boards and compatible with the Arduino IDE, which allows
programs to be uploaded to boards without special tools, usually via USB.

http://lamaplc.com/lib/exe/detail.php?id=arduino%3Aarduino_basic&media=arduino:arduino_ide_1.png

Last update: 2025/09/23 22:07 arduino:arduino_basic http://lamaplc.com/doku.php?id=arduino:arduino_basic

http://lamaplc.com/ Printed on 2026/01/17 00:34

Sketch

The programs that can be run on Arduino are called sketches. Sketches can be saved in “.ino” files or
loaded from there. There are many (basic) example programs in the Arduino IDE under File /
Examples. Still, almost every installed directory also contains example programs (they can also be
opened in File / Examples after installation, they are at the bottom of the list).
Many sketches communicate with the computer via a serial connection. The Arduino IDE has a built-in
serial monitor or terminal to help display this data. You can also send data to the board using the
Monitor. You can find the serial monitor under “Tools” → “Serial monitor”. Starting this usually reboots
the Arduino board. Make sure you set the speed, or baud rate, to the correct value. If you don't do
that, you'll either see garbage or nothing here. The typical data transfer rates are: 9600 or 115.200
baud.

Arduino and USB

Arduino boards can be programmed from your PC via the USB port (see above, Bootloader), and
during program execution, serial information can also be sent to your PC through this port. Most
boards include the classic FTDI or AtMega16U2 USB communication IC for the connection, but it may
happen that the so-called (Chinese) CH340..CH341 ICs are built in. Each of these requires a different
driver; this must be taken care of when using a distinct board for the first time, because it is possible
that our PC does not see the Arduino.

Most Arduino USB ports have an overcurrent protection (resettable polyfuse), which automatically
releases in the event of a current consumption exceeding 500 mA or a short circuit.

Arduino USB UART converter types:

FTDI: Converter type of early Arduinos, proved to be too expensive. It is still used as an external
converter (connected to the ISP)
Atmega8U2: The first serial Uno-k converter, up to version R2
AtMega16U2: Currently, most (official) Arduino board UART converters
CH340/CH340G/CH341: typical converters of Chinese-made Arduino clones; downloading the
drivers is somewhat difficult

TTL logic levels

The (digital) electronic equipment that uses logical high (HIGH) and low (LOW) levels is mostly the so-
called. The voltage levels associated with high/low signals are defined based on TTL (Transistor-
Transistor Logic). The Arduino logic levels differ slightly from these levels:

2026/01/17 00:34 7/14 LamaPLC: Arduino basic

lamaPLC - http://lamaplc.com/

VOH: Minimum output supply voltage level. Above that, the TTL device provides a HIGH signal
VIH: Minimum input voltage level for the HIGH signal
VIL: Maximum input voltage level for low (LOW) signal
VOL: Maximum output voltage for a low (LOW) signal

The evaluation of the input (HIGH or LOW) becomes uncertain on the covered parts. While the
program logic levels can be characterized by the constants true (true, 1) and false (false, 0), the state
of the pins can be characterized by the constants HIGH (high, 1) and LOW (low, 0).

The HIGH state occurs when a signal is read at a level above 3V on the 5V inputs, and above 2.0V on
the 3.3V inputs. The LOW states are under 1.5V for five boards, approximately for 3.3V boards. They
appear below 1.0V.

Intermediate voltage levels (1.5V - 3.0V for 5V boards, 1.0V - 2.0V for 3.3V boards) should be avoided
because the input state becomes uncertain.

If the input pull-up resistor was previously activated on the given pin, there is a good chance that we
will never read a HIGH state from it, see: digitalRead().

In the case of outputs, after releasing the HIGH state, the pin takes the maximum voltage level, i.e.,
3.3V for 3.3V boards, 5V for 5V boards.

Last update: 2025/09/23 22:07 arduino:arduino_basic http://lamaplc.com/doku.php?id=arduino:arduino_basic

http://lamaplc.com/ Printed on 2026/01/17 00:34

If the internal pull-up resistor was previously activated, the output voltage will also be less than 5V
(approx. 3.3V) in case of a HIGH signal, see: digitalWrite().

Load capacity of pins

Arduinos (due to their simple construction) cannot be loaded, and this must be taken into account for
all controls that require more current (such as solenoid valves and relays). In the case of a more
serious overload, the board dies, and in the case of a smaller (and short-term) overload, it switches
off. In the case of poorly dimensioned relay control, the Arduino may turn the relays on and off (the
relays click accordingly). In such a case, it is worth considering the load on the board.

Main load capacity limits (of course, these may vary by type):

Pin load capacity for UNO (5V): 20 mA
Pin load capacity for the Mega board (5V): 40 mA
Pin load capacity (for 3.3V): 10 mA
Pin load capacity for Giga R1 WiFi (for 3.3V): 8 mA
Maximum load capacity (UNO) of all pins (Vcc, GND): 200 mA
Maximum load capacity (Mega) of all pins (Vcc, GND): 400..800 mA

Use of pins

There are a few tips and tricks for using the Arduino pins, which are also the causes of many
inexplicable problems:
Pin0 and Pin1 are connected to serial communication, so if we want to receive information from the
board and use the Serial.print instruction to send information to the serial monitor, these pins cannot
be used as digital input/output at this time. We should not even define these as digital channels; if
this is not possible because we have run out of pins, then we should implement a function here that
will allow us to say goodbye to serial use for the time being.

The analog pins can be used as digital ports without further ado, in which case you refer to them as
pins 14..19, for example, in the case of the Uno, as shown in the figure below. It is worthwhile to
designate the ports to be left free during the design phase. Since I primarily use I²C for
communication, I utilize A4 and A5 for this purpose in the case of the Uno. In the same way, especially
for testing, it is worth considering serial communication and the corresponding ports, i.e., the 0 (Rx)
and 1 (Tx) pins in the case of the Uno.

http://lamaplc.com/lib/exe/detail.php?id=arduino%3Aarduino_basic&media=arduino:uno_pins.png
http://lamaplc.com/lib/exe/detail.php?id=arduino%3Aarduino_basic&media=arduino:uno_pins.png

2026/01/17 00:34 9/14 LamaPLC: Arduino basic

lamaPLC - http://lamaplc.com/

Arduino ISP/ICSP

The ISP (In-system programming) port, which is typically integrated on Arduino (and compatible)
boards, provides the possibility to download a program to the board by bypassing USB/bootload. It
also provides communication options for SPI communication, for example, between cards. Pin
assignments of possible ports:

Additionally, these pins are connected in parallel with the corresponding pins of the IO ports (see
below); therefore, they are grouped here for download convenience. It is also possible to use an
Arduino board to upload programs to other Arduinos via the ISP (In-System Programming) method.

Arduino ISP port name short description
MISO Master In Slave Out input as master, output as slave
VTG 5V input 5V+

Last update: 2025/09/23 22:07 arduino:arduino_basic http://lamaplc.com/doku.php?id=arduino:arduino_basic

http://lamaplc.com/ Printed on 2026/01/17 00:34

Arduino ISP port name short description
SCK Serial Clock serial clock signal, provided by the master for SPI
MOSI Master Out Slave In output as master, input as slave
RST Reset reset
GND 0V 0V

Arduino ISR

The ISR (interrupt service routine) function was developed to monitor inputs with rapidly changing
states. These interruptions are typically suitable for counting or monitoring fast pulses (Hall pulses,
such as those from flowmeters or current signal pulses) and are independent of the program run
cycle.
From the software side, these signals must be handled with the attachInterrupt() function, and these
fast signals can only be read on the ports designated for this purpose:

Board Digital ports assigned to interrupt
Arduino Uno, Arduino Nano, Mini, other 328-based 2, 3
Arduino Mega, Mega2560, MegaADK 2, 3, 18, 19, 20, 21
Micro, Leonardo, other 32u4-based 0, 1, 2, 3, 7
Wemos D1 all digital outputs (except D0)

Arduino PWM

PWM (pulse-width modulation) is a form of signal generation that can be used to create analog output
signals from digital inputs, i.e., it serves as a digital-to-analog converter function. PWM outputs can be
controlled with the analogWrite() function on Arduinos. The PWM function is available on the
designated PWM digital outputs, marked with ~.

Board designated PWM outputs
For most ATmega168 or ATmega328 boards
Arduino Uno, Arduino Nano* 3, 5 , 6, 9, 10, 11 pin, pin 5-6: 980 Hz, the rest: 490 Hz

Arduino Mega 2..13. and 44..46. pin
Wemos D1 all digital outputs (except D0)
Arduino Micro 0, 1, 2, 3, 7
for older boards pin 9, 10 and 11

*: for ATmega168 or ATmega328 boards:

timer0: pin 5 and 6, 8-bit PWM
timer1: pin 9 and 10, 16-bit PWM
timer2: pin 11 and 3, 8-bit PWM

For servos that require 16-bit resolution, only pins 9 and 10 will work!

Only 8-bit PWM can be implemented with the Arduino Micro.

2026/01/17 00:34 11/14 LamaPLC: Arduino basic

lamaPLC - http://lamaplc.com/

Arduino AREF pin

Via the AREF pin, the analogReference() function can be used to set the external (type: EXTERNAL)
reference voltage (i.e., the maximum value of the input range) used for the analog input.

Arduino communication

Comparison of the most frequently used direct* communication solutions for Arduino systems:

*: Ethernet, Wifi, CAN, etc., are not direct communication in this sense, because they require some
converter, and the converters are only available with the communication forms below.

communication
solution Serial (UART) I²C 1-Wire SPI

maximum number of
partners / slaves

P2P communication,
1 master + 1 slave

theoretically 128
stations

no theoretical
limit,
practically
approx. 150

Defined by
the number
of SS pins.
without SS 1
master and 1
slave

bridgeable distance (≈)
9600 baud: 2-3 m
300 baud: >100 m
(twisted pair)

100 Kbaud: 1 m
10 Kbaud: 6-8 m

with 20
sensors max.
100 m

max. 5 m

number of pins used 2: Tx, Rx 2: SDA, SCL 1: DATA
3 or 4: SCK,
MOSI, MISO,
(SS)

restrictions
Using pins 0 and 1 for
serial download and
serial monitor does not
work

Blocks the
following pins:
SDA-A4, SCL-A5

- Blocks 4 pins

Arduino serial communication

Arduino hardware serial communication

The default communication of Arduino boards is serial (UART), which is carried out via USB with the
programming device or the communication partner PC. The TX and RX pins of the boards are also
connected in parallel with the USB port, so if you use serial communication, you cannot use these pins
as digital ports.

This channel can, of course, also be used for other UART communication, for example, RS-232, but in
this case, you have to pay attention to the voltage levels, which in the case of RS-232 are typically ±
12V. All Arduino boards have at least one serial (UART) port; their pin assignment:

board serial communication pins
Arduino Uno, Nano Rx←0, Tx→1

Arduino Mega, Due Serial1: pin 19 (RX), pin 18 (TX), Serial2: pin 17 (RX), pin 16 (TX), Serial3: pin 15
(RX), pin 14 (TX)

http://lamaplc.com/doku.php?id=com:basic_i2c
http://lamaplc.com/doku.php?id=com:basic_1wire
http://lamaplc.com/doku.php?id=com:basic_spi

Last update: 2025/09/23 22:07 arduino:arduino_basic http://lamaplc.com/doku.php?id=arduino:arduino_basic

http://lamaplc.com/ Printed on 2026/01/17 00:34

Arduino software serial communication

Software serial communication is made possible by using the SoftwareSerial library. While hardware
serial communication utilizes hardware components for the UART and operates while performing
other tasks (as long as there is room in the 64-byte buffer), software serial communication is handled
by software. This is obviously at the expense of the execution of the other software, but it enables
multiple serial communications at the same time, at a speed of up to 115.200.

Limitations of software serial communication

If several software serial ports are to be used, only one can receive data at the same time
Not all pins of Mega and Mega 2560 are suitable for software serial communication, the
following pins can be used for RX: 10, 11, 12, 13, 14, 15, 50, 51, 52, 53, A8 (62), A9 (63), A10
(64), A11 (65), A12 (66), A13 (67), A14 (68), A15 (69).
For Leonardo, only the following pins can be used for RX: 8, 9, 10, 11, 14 (MISO), 15 (SCK), 16
(MOSI).
On the Arduino Genuino 101, the maximum RX speed can be 57,600 bps, and pin 13 cannot be
used as RX.

Data loss during software serial communication

When you send or receive long messages using software serial communication, they may arrive with
some characters missing. The reason for this is not necessarily evident in the code. The
SoftwareSerial receive buffer may get full and then discard the characters.

The easiest solution to this is to increase the software's serial buffer from the default 64 bytes to 256
bytes (or just larger than 64 bytes):

On the PC, open the following file: C:\Program Files (x86) → Arduino → hardware → Arduino → avr →
libraries → SoftwareSerial → SoftwareSerial.h and change the following line:

// RX buffer size
#define _SS_MAX_RX_BUFF 64 // change 64 to max 256, for example

Arduino I²C

One of the most commonly used communications on Arduino boards is I²C. The default ports for
communication on the various boards are as follows:

Board SDA (data port) SCL (clock port) note
Arduino Uno R3 A4 A5
Arduino Uno R4 (Wifi/Minima) SDA SCL dedicated ports
Arduino Mega 20 21
Arduino Nano 4 5

Wemos D1 A4 (SDA) A5 (SCL) all digital outputs
(except D0) can be applied to I²C

http://lamaplc.com/doku.php?id=com:basic_i2c

2026/01/17 00:34 13/14 LamaPLC: Arduino basic

lamaPLC - http://lamaplc.com/

Board SDA (data port) SCL (clock port) note
NodeMCU (ESP8266) D2(GPIO4) D1(GPIO5) D0 cannot be used for I²C

Arduino SPI

One of the commonly used communications on Arduino boards is SPI. On Arduinos, the ISP connection
module also uses SPI, which is relatively easy to project (unfortunately, SS did not have a place here):

Board SPI SS
(select) SPI MOSI SPI MISO SPI SCK

Arduino UNO 10 11 12 13
Arduino Mega 53 50 51 52
Arduino Nano D10 D11 D12 D13
NodeMCU (ESP8266) D8(GPIO15) D7(GPIO13) D6(GPIO12) D5(GPIO14)

Arduino 1-wire

The 1-wire bus describes a Dallas Semiconductor Corp. serial interface that handles a data line (DQ)
that is used as both a power supply and a transmit and receive line. The term '1-wire' is misleading
because communication also requires a ground (GND). In fact, even with 1-wire, we always use at
least two physical wires (GND, DQ).

Arduino Ethernet

Arduino is, of course, suitable for communication via Ethernet and access to Internet functions. The
easiest way to access Ethernet is to use an Ethernet module or extension. Modules and add-ons
typically communicate with Arduino boards via SPI:

http://lamaplc.com/doku.php?id=com:basic_spi
http://lamaplc.com/doku.php?id=com:basic_1wire
http://lamaplc.com/doku.php?id=com:basic_spi

Last update: 2025/09/23 22:07 arduino:arduino_basic http://lamaplc.com/doku.php?id=arduino:arduino_basic

http://lamaplc.com/ Printed on 2026/01/17 00:34

Arduino Uno Ethernet SPI Pinout Arduino Mega Ethernet SPI Pinout

A micro-SD card reader is also integrated on most Ethernet boards. The use of this is optional, but it
occupies an extra pin on the board.

WIZnet W5x00 series ICs typically handle the Ethernet communication for modules/extensions. A
comparison of their main features:

Feature W5100 W5300 W5500
Interface Mode direct, indirect, SPI direct, indirect SPI
Number of sockets 4 4 8
Speed (max, MBPS) 25 25 15
Data bus Only 8 Bit, DATA[7:0] 16/8 Bit, DATA[15:8]/DATA[7:0] 16/8 Bit
Title bus 15 PINs, ADDR[14:0] 10PINs, ADDR[9:0] 10PINs, ADDR[9:0]

Memory size
(Fixed) 16KBytes
TX : 8KBytes, RX :
8Kbytes

(Configurable) 128KBytes
TX : 0~128KBytes, RX :
0~128KBytes

(Fixed) 32KBytes
TX : 16KBytes, RX :
16Kbytes

arduino, basic

This page has been accessed for: Today: 1, Until now: 291

From:
http://lamaplc.com/ - lamaPLC

Permanent link:
http://lamaplc.com/doku.php?id=arduino:arduino_basic

Last update: 2025/09/23 22:07

http://lamaplc.com/lib/exe/detail.php?id=arduino%3Aarduino_basic&media=arduino:arduino_uno_ethernet_pins.png
http://lamaplc.com/lib/exe/detail.php?id=arduino%3Aarduino_basic&media=arduino:arduino_mega_ethernet_pins.png
http://lamaplc.com/doku.php?id=tag:arduino&do=showtag&tag=arduino
http://lamaplc.com/doku.php?id=tag:basic&do=showtag&tag=basic
http://lamaplc.com/
http://lamaplc.com/doku.php?id=arduino:arduino_basic

	LamaPLC: Arduino basic
	A comparison of the technical data of some Arduino boards
	Memory types of Arduino boards
	Flash memory
	SRAM
	EEPROM

	Arduino IDE
	Arduino OTA
	Arduino API
	Arduino Bootloader
	Sketch

	Arduino and USB
	TTL logic levels
	Load capacity of pins
	Use of pins
	Arduino ISP/ICSP
	Arduino ISR
	Arduino PWM
	Arduino AREF pin
	Arduino communication
	Arduino serial communication
	Arduino hardware serial communication
	Arduino software serial communication
	Limitations of software serial communication
	Data loss during software serial communication

	Arduino I²C
	Arduino SPI
	Arduino 1-wire
	Arduino Ethernet

