2026/01/17 00:34 1/14 LamaPLC: Arduino basic

LamaPLC: Arduino basic

Arduino is an open-source hardware and software company, project,
and user community that designs and manufactures single-board
microcontrollers and microcontroller kits for building digital devices. Its
hardware products are licensed under a CC BY-SA license. In contrast,
the software is licensed under the GNU Lesser General Public License
(LGPL) or the GNU General Public License (GPL), allowing anyone to
manufacture Arduino boards and distribute the software. Arduino
boards are available commercially from the official website or through
authorized distributors.

Arduino board designs use a variety of microprocessors and controllers.

The boards are equipped with sets of digital and analog input/output (I/O) pins that can be interfaced
with various expansion boards ('shields'), breadboards (for prototyping), and other circuits. The
boards feature serial communications interfaces, including Universal Serial Bus (USB) on some
models, which are also used for loading programs. Microcontrollers can be programmed using the C
and C++ programming languages, utilizing a standard APl known as the Arduino Programming
Language, which is inspired by the Processing language and used in conjunction with a modified
version of the Processing IDE.

A comparison of the technical data of some Arduino boards

Digital
. CPU |Power Operation "umberAnalog o\, IcpaM [EEPROM
Type chip speed|supply|voltage of pins |number memory memory|size Extras
p pply 9¢ | (owm lof pins y y
pins)
Arduino Uno |\, 1a328p (16 6. 20v |5V 14(6) |6 32KB 2KB |1KB
R3 MHz
UNO WiFi 16 6,144 |256 |VIFL
Rev2 ATmegad809 |\, 16.20V 5V 14(6) |6 48KB |oes laytes E|Euetooth
WIF:
Bluetooth;
UART, I2C,
Renesas SPI, CAN;
UNO R4 WiFi RA4M1 48 USB-C port;
(ESP32-S3) |(Arm Cortex- |MHz |°-24V[]PY 14(6) |6 256kB 132kB 8KB \jh-(q5
M4) Bit): OP
AMP; LED
matrix; HID
support
UART, I2C,
Renesas SPI, CAN;
UNO R4 RA4M1 48 USB-C port;
Minima (Arm Cortex. Mz [6-24V/5V 14(6) |6 256kB [32kB [8kB |70
M4) Bit): OP
AMP; SWD
Arduino 16
Mega2s0 [ATMega2s60 | i/ 6.20V |5V 54 (15) |16 256 KB |8KB |4 KB

lamaPLC - http://lamaplc.com/

http://lamaplc.com/lib/exe/detail.php?id=arduino%3Aarduino_basic&media=arduino:arduino_mega_and_ethernet_1.png

Last update: 2025/09/23 22:07 arduino:arduino_basic http://lamaplc.com/doku.php?id=arduino:arduino_basic

Digital
. CPU |Power [Operation|"UmberiAnalog b\ |cpam [EEPROM
Type chip speed|supply|voltage of pins |number memory memory|size Extras
p pply 9 (pwm |of pins y Yy
pins)
Wi-Fi®
802.11b/g/n
65 Mbps
STM32H747XI E(')‘\‘f?:;:‘g%
Arduino Giga|Dual Core 480 .
R1 WiFi (Cortex® M7- |MHz 6..24V|3,3V 76 (13) |12 2 MB 1 MB - Micro UFL
Kern) connector
4x UART
3x I2C
2x SPI
1x CAN
ATOLSAM3XBE| ., Vo oTG
Arduino Due [SAM3X8E ARM 9VvDC|3,3V 54 (12) (12 512 KB |96 KB -
MHz 4x UART
Cortex-M3
1x CAN
3.X:
Arduino ATmega328, |16 32KB |2KB 1 KB Mini-B USB
Nano 2.X: MHz 7.12V 5V 14(6) |8 16 KB 1 KB 512 Byte |connector
ATmegal68
5 hardware
Arduino 16 interrupts,
Micro ATmega32u4 MHz 7..12V |5V 20(7) |12 32KB |25KB |1KB full speed
UsB
5 hardware
Keyes Pro | 1 6ga32us 8 MHz |7.9v [3.3v 12(5) |4 32KB [25KB |1KkB |Mnterrupts,
Micro full speed
UsB
Pro Micro 5V |ATmega32u4 I%/I6Hz 7.9V |5V 12(5) |4 32 KB 25KB |[1KB
gl\ilgl\-llz 33V 2 hardware
Arduino Mini |ATmega328P 5V 16 6..20V 5{/ 14 (6) |8 32KB [2KB 1 KB interrupts,
; no USB port
MHz
. USART / I12C
STM32F103 i::nﬂ?goftzeflt Z/IZHZ 5V 2.7V..3.6V |16 16 64 KB 20 KB - /SPI'/USB/
CAN / DMA
. USART / I2C
sTM32Faor [711323Z0 125 sy lh7v.3eviie |16 256kB (64K | /'SPI/USB/
CAN / DMA
integrated
Wemos D1 |[ESP8266EX- 9..12V (3.3V 11(11) 1 4 KB 2 KB 1KB ESP8266
. ATmegal68 16KB 512 byte
Duemilanove ATmega328- 6..20V |5V 14 (6) |6 32KB 1KB 1KB -
Digispark - - - 5V 14 10 16KB 2KB 1KB
RoboRED - - - 5V/3.3V 14 6 32KB 2KB 1KB
ATmegal280/ATmegal280 |- 5V 54 16 128KB [8KB 4KB
Arduino 16
Leonardo ATmega32u4 MHz 5V 20 (7) 12 32KB 2.5KB 1K
Arduino Due |- - 3.3V |54 12 512KB (96K
ChipKIT o
Max32 Diligent - 3.3V (83 16 512KB [128KB

http://lamaplc.com/ Printed on 2026/01/17 00:34

2026/01/17 00:34 3/14 LamaPLC: Arduino basic
Digital
. CPU |Power|Operation "umber/Analog g\ \cpamM [EEPROM
Type chip speed|supply|voltage of pins |number memory memory|size Extras
p pply g (pwm |of pins y y
pins)
2
SAMD21 ISB ?:rs &
. Cortex®-M0+ 7 input
Arduino MKR |3 v 1o 48 sy 33v 22 +1 [256KB |32KB |no sound,
ZERO MHz music &
power ARM output diai
MCU igital
audio data
SAMD21 Wifi on
Arduino MKR Cortex®-M0+ 48 7 input It\)/lcl)_lazrd: 868
32bit low 5V 3.3V 8 +1 256 KB [32KB |no .)
FOX 1200 MHz Sigfox:
power ARM output
MCU Smart RF
ATA8520
Memory types of Arduino boards
Program Memory Data Memory EEPROM
L] #-hits E-bits
32 General
Purposa
Hash Registers
EEPROM
16K x 16
B4 1/0 512 x 8
Registers
Application Flash Section
160 'O Ext
Registers
SRAM
2048 x 8
Boot Flash Section

Flash memory

This is considered the main memory of Arduinos; it stores the downloaded program and preserves its
content even after being switched off. In other words, it is sufficient to download the program here

only once, as it restarts itself every time it is switched on again. During programming, we cannot rely
on the entire memory, as the download program (bootloader) and various communications protocols
also occupy parts of it.

In addition, the downloaded libraries can also occupy a significant amount of space, so even with a 32
KB memory by default, we can expect only 24-30 KB (without libraries).

Additionally, the flash memory cannot be rewritten indefinitely; its maximum number of write cycles
is limited to 100,000. This is enough to store a program rewritten 10 times a day for about 27 years
without any problems.

lamaPLC - http://lamaplc.com/

http://lamaplc.com/doku.php?id=arduino:arduino_family_mkr#mkr_zero
http://lamaplc.com/doku.php?id=arduino:arduino_family_mkr#mkr_zero
http://lamaplc.com/doku.php?id=arduino:arduino_family_mkr#mkr_fox_1200
http://lamaplc.com/doku.php?id=arduino:arduino_family_mkr#mkr_fox_1200

Last update: 2025/09/23 22:07 arduino:arduino_basic http://lamaplc.com/doku.php?id=arduino:arduino_basic

SRAM

static random-access memory

Simply put, SRAM stores the internal variables defined in the program. SRAM, in contrast to flash
memory, does not retain its contents in a power-free state. Therefore, after each power-on, the
program redefines the variables, and they are transferred to the SRAM with their default values
determined there.

EEPROM

Electrically Erasable Programmable Read-Only Memory

EEPROM is the non-volatile variable memory of boards. This, similarly to Flash, preserves its content
even when it is turned off; however, like Flash, it is only certified for 100,000 write cycles. Therefore,
it is not particularly suitable for cyclic data writing, for example. Additionally, it's slightly slower to
handle than regular SRAM.

Due to these technical characteristics, the EEPROM can be used for the following functions:

e storage of configuration(s).

e saving initial settings

¢ save counters, values, and collected values (e.g., operating hours counter) independent of
restarts

Different Arduino boards have different EEPROM sizes:

e ATmegal68: 512 Bytes

e ATmega8: 512 Bytes

e ATmega328P: 1024 Byte
e ATmega32U4: 1024 Bytes
e ATmegal280: 4096 Bytes
e ATmega2560: 4096 Bytes

When writing to the EEPROM memory, Arduino specifies two parameters: the address and value. Each
byte can hold a value between 0 .. 255 (byte-wise):

EEPROM.write // write value "244" to byte address 2
val = EEPROM. read // read EEprom arrdess 10

Arduino IDE

http://lamaplc.com/ Printed on 2026/01/17 00:34

2026/01/17 00:34 5/14 LamaPLC: Arduino basic

The Arduino IDE is a development o
system written in Java, with which we can &

write programs for the Arduino, compile g —
and debug them, and then download 00 Ban —
them to the cards. The download is most # ™' -

often performed via the USB port, which .1 namect i
is located on almost every Arduino board. :
However, it is also possible to download
via ISP or OTA, if the given board .
supports these options. :
Arduinos have a pre-flashed bootloader,

which allows downloading of code without
external hardware, simply via the STK500 - pEamsen
protocol. erias peiss pucseris] < om0

If necessary, the above bootloader can be ig i
bypassed using the ICSP (In-Circuit Serial
Programming).

Of course, we have many options for
programming Arduinos outside of the
rather inexpensive (but efficient and free) Arduino IDE. For example, Visual Studio can also be used
for this purpose after installing an Arduino plugin.

Arduino OTA

Over the Air

The Arduino also gives you the option to download programs via wifi or even an Ethernet shield. ESP
modules (ESP8266 or ESP32) offer a perfect opportunity to exploit this function, which can be directly
integrated with Arduino boards. Thus, most of the implementation of downloading via Wifi is carried
out by these modules.

Arduino API

Application Programming Interface

The functionality of Arduino can be extended through the library system. The use of libraries requires
memory, but with careful selection, the memory load can be well optimized, and a significant portion
of the programming can be saved by utilizing them. There are standard libraries, such as Wire,
AVR_C, and String, but a huge number of well-developed libraries are also available for download from
GitHub. When describing the sensors, | almost always refer to the GitHub libraries.

Arduino Bootloader

A special program preloaded on Arduino Boards and compatible with the Arduino IDE, which allows
programs to be uploaded to boards without special tools, usually via USB.

lamaPLC - http://lamaplc.com/

http://lamaplc.com/lib/exe/detail.php?id=arduino%3Aarduino_basic&media=arduino:arduino_ide_1.png

Last update: 2025/09/23 22:07 arduino:arduino_basic http://lamaplc.com/doku.php?id=arduino:arduino_basic

Sketch

The programs that can be run on Arduino are called sketches. Sketches can be saved in “.ino” files or
loaded from there. There are many (basic) example programs in the Arduino IDE under File /
Examples. Still, almost every installed directory also contains example programs (they can also be
opened in File / Examples after installation, they are at the bottom of the list).

Many sketches communicate with the computer via a serial connection. The Arduino IDE has a built-in
serial monitor or terminal to help display this data. You can also send data to the board using the
Monitor. You can find the serial monitor under “Tools” - “Serial monitor”. Starting this usually reboots
the Arduino board. Make sure you set the speed, or baud rate, to the correct value. If you don't do
that, you'll either see garbage or nothing here. The typical data transfer rates are: 9600 or 115.200
baud.

Arduino and USB

Arduino boards can be programmed from your PC via the USB port (see above, Bootloader), and
during program execution, serial information can also be sent to your PC through this port. Most
boards include the classic FTDI or AtMegal6U2 USB communication IC for the connection, but it may
happen that the so-called (Chinese) CH340..CH341 ICs are built in. Each of these requires a different
driver; this must be taken care of when using a distinct board for the first time, because it is possible
that our PC does not see the Arduino.

Most Arduino USB ports have an overcurrent protection (resettable polyfuse), which automatically
releases in the event of a current consumption exceeding 500 mA or a short circuit.

Arduino USB UART converter types:

e FTDI: Converter type of early Arduinos, proved to be too expensive. It is still used as an external
converter (connected to the ISP)

e Atmega8U2: The first serial Uno-k converter, up to version R2

e AtMegal6U2: Currently, most (official) Arduino board UART converters

e CH340/CH340G/CH341: typical converters of Chinese-made Arduino clones; downloading the
drivers is somewhat difficult

TTL logic levels

The (digital) electronic equipment that uses logical high (HIGH) and low (LOW) levels is mostly the so-
called. The voltage levels associated with high/low signals are defined based on TTL (Transistor-
Transistor Logic). The Arduino logic levels differ slightly from these levels:

http://lamaplc.com/ Printed on 2026/01/17 00:34

2026/01/17 00:34 7/14 LamaPLC: Arduino basic

5V
vcc__ﬁv vcc__ﬁv
Voh—t—42V 4\
V.. 33V
3V
Vip ——3V
Von 27V
Von 24V
2V
WV, e 2 Vi 2V
Vi—T—15V
1Y
V“——D,BV V __ﬂ!g \""Ir I".“Ii| D,BV
ol
Vm__ﬂlq' \' Vm G,E V
oV
GND ——0Q V GND ——0V GND ov
Standard 5V Arduino Arduino
TTL logika 5V 3,3V

e VOH: Minimum output supply voltage level. Above that, the TTL device provides a HIGH signal
e VIH: Minimum input voltage level for the HIGH signal

e VIL: Maximum input voltage level for low (LOW) signal

e VOL: Maximum output voltage for a low (LOW) signal

The evaluation of the input (HIGH or LOW) becomes uncertain on the covered parts. While the
program logic levels can be characterized by the constants true (true, 1) and false (false, 0), the state
of the pins can be characterized by the constants HIGH (high, 1) and LOW (low, 0).

The HIGH state occurs when a signal is read at a level above 3V on the 5V inputs, and above 2.0V on
the 3.3V inputs. The LOW states are under 1.5V for five boards, approximately for 3.3V boards. They
appear below 1.0V.

Intermediate voltage levels (1.5V - 3.0V for 5V boards, 1.0V - 2.0V for 3.3V boards) should be avoided
because the input state becomes uncertain.

If the input pull-up resistor was previously activated on the given pin, there is a good chance that we
will never read a HIGH state from it, see: digitalRead().

In the case of outputs, after releasing the HIGH state, the pin takes the maximum voltage level, i.e.,
3.3V for 3.3V boards, 5V for 5V boards.

lamaPLC - http://lamaplc.com/

Last update: 2025/09/23 22:07 arduino:arduino_basic http://lamaplc.com/doku.php?id=arduino:arduino_basic

If the internal pull-up resistor was previously activated, the output voltage will also be less than 5V
(approx. 3.3V) in case of a HIGH signal, see: digitalWrite().

Load capacity of pins

Arduinos (due to their simple construction) cannot be loaded, and this must be taken into account for
all controls that require more current (such as solenoid valves and relays). In the case of a more
serious overload, the board dies, and in the case of a smaller (and short-term) overload, it switches
off. In the case of poorly dimensioned relay control, the Arduino may turn the relays on and off (the
relays click accordingly). In such a case, it is worth considering the load on the board.

Main load capacity limits (of course, these may vary by type):

Pin load capacity for UNO (5V): 20 mA

Pin load capacity for the Mega board (5V): 40 mA

Pin load capacity (for 3.3V): 10 mA

Pin load capacity for Giga R1 WiFi (for 3.3V): 8 mA

Maximum load capacity (UNO) of all pins (Vcc, GND): 200 mA
Maximum load capacity (Mega) of all pins (Vcc, GND): 400..800 mA

Use of pins

There are a few tips and tricks for using the Arduino pins, which are also the causes of many
inexplicable problems:

Pin0 and Pinl are connected to serial communication, so if we want to receive information from the
board and use the Serial.print instruction to send information to the serial monitor, these pins cannot
be used as digital input/output at this time. We should not even define these as digital channels; if
this is not possible because we have run out of pins, then we should implement a function here that
will allow us to say goodbye to serial use for the time being.

The analog pins can be used as digital ports without further ado, in which case you refer to them as
pins 14..19, for example, in the case of the Uno, as shown in the figure below. It is worthwhile to
designate the ports to be left free during the design phase. Since | primarily use I2C for
communication, | utilize A4 and A5 for this purpose in the case of the Uno. In the same way, especially
for testing, it is worth considering serial communication and the corresponding ports, i.e., the 0 (Rx)
and 1 (Tx) pins in the case of the Uno.

http://lamaplc.com/ Printed on 2026/01/17 00:34

http://lamaplc.com/lib/exe/detail.php?id=arduino%3Aarduino_basic&media=arduino:uno_pins.png
http://lamaplc.com/lib/exe/detail.php?id=arduino%3Aarduino_basic&media=arduino:uno_pins.png

2026/01/17 00:34

9/14

LamaPLC: Arduino basic

Arduino Uno R3 Pinout

Arduino ISP/ICSP

The ISP (In-system programming) port, which is typically integrated on Arduino (and compatible)
boards, provides the possibility to download a program to the board by bypassing USB/bootload. It
also provides communication options for SPI communication, for example, between cards. Pin
assignments of possible ports:

1 2

MISO H@ VTG M?E
SCK @ @| MOSI asT
RST GND

e SCK
ISP6PIN MISO

|

VTG
GND
GND
GND
GND

ISP10PIN

Additionally, these pins are connected in parallel with the corresponding pins of the 10 ports (see
below); therefore, they are grouped here for download convenience. It is also possible to use an
Arduino board to upload programs to other Arduinos via the ISP (In-System Programming) method.

Arduino ISP port

name

short description

MISO

Master In Slave Out

input as master, output as slave

VTG

5V

input 5V+

lamaPLC - http://lamaplc.com/

Last update: 2025/09/23 22:07 arduino:arduino_basic http://lamaplc.com/doku.php?id=arduino:arduino_basic

Arduino ISP port name short description

SCK Serial Clock serial clock signal, provided by the master for SPI
MOSI Master Out Slave Injoutput as master, input as slave

RST Reset reset

GND ov ov

Arduino ISR

The ISR (interrupt service routine) function was developed to monitor inputs with rapidly changing
states. These interruptions are typically suitable for counting or monitoring fast pulses (Hall pulses,
such as those from flowmeters or current signal pulses) and are independent of the program run
cycle.

From the software side, these signals must be handled with the attachinterrupt() function, and these
fast signals can only be read on the ports designated for this purpose:

Board Digital ports assigned to interrupt
Arduino Uno, Arduino Nano, Mini, other 328-based|2, 3

Arduino Mega, Mega2560, MegaADK 2,3,18,19, 20,21

Micro, Leonardo, other 32u4-based 0,1,2,3,7

Wemos D1 all digital outputs (except DO)

Arduino PWM

PWM (pulse-width modulation) is a form of signal generation that can be used to create analog output
signals from digital inputs, i.e., it serves as a digital-to-analog converter function. PWM outputs can be
controlled with the analogWrite() function on Arduinos. The PWM function is available on the
designated PWM digital outputs, marked with ~.

Board designated PWM outputs

For most ATmegal68 or ATmega328 boards
Arduino Uno, Arduino Nano*

3,5,6,9, 10, 11 pin, pin 5-6: 980 Hz, the rest: 490 Hz

Arduino Mega 2..13. and 44..46. pin

Wemos D1 all digital outputs (except DO)
Arduino Micro 0,1,2,3,7

for older boards pin 9, 10 and 11

*. for ATmegal68 or ATmega328 boards:

e timer0: pin 5 and 6, 8-bit PWM
e timerl: pin 9 and 10, 16-bit PWM
e timer2: pin 11 and 3, 8-bit PWM

For servos that require 16-bit resolution, only pins 9 and 10 will work!

Only 8-bit PWM can be implemented with the Arduino Micro.

http://lamaplc.com/ Printed on 2026/01/17 00:34

2026/01/17 00:34

11/14

LamaPLC: Arduino basic

Arduino AREF pin

Via the AREF pin, the analogReference() function can be used to set the external (type: EXTERNAL)
reference voltage (i.e., the maximum value of the input range) used for the analog input.

Arduino communication

Comparison of the most frequently used direct* communication solutions for Arduino systems:

*. Ethernet, Wifi, CAN, etc., are not direct communication in this sense, because they require some

converter, and the converters are only available with the communication forms below.

communication

Serial (UART)

12C

1-Wire

SPI

100 Kbaud: 1 m

solution
Defined by
no theoretical [the number
maximum number of P2P communication, theoretically 128 |limit, of SS pins.
partners / slaves 1 master + 1 slave stations practically without SS 1
approx. 150 |masterand 1
slave
9600 baud: 2-3 m with 20

serial monitor does not
work

SDA-A4, SCL-A5

bridgeable distance (=) 3OQ baud: .>100 m 10 Kbaud: 6-8 m |S€NSOrs max. |max. 5m
(twisted pair) 100 m
3 or 4: SCK,
number of pins used 2: Tx, Rx 2: SDA, SCL 1: DATA MOSI, MISO,
(SS)
Usmg pins 0 and 1 for Blocks the
- serial download and . . ,
restrictions following pins: - Blocks 4 pins

Arduino serial communication

Arduino hardware serial communication

The default communication of Arduino boards is serial (UART), which is carried out via USB with the
programming device or the communication partner PC. The TX and RX pins of the boards are also
connected in parallel with the USB port, so if you use serial communication, you cannot use these pins

as digital ports.

This channel can, of course, also be used for other UART communication, for example, RS-232, but in
this case, you have to pay attention to the voltage levels, which in the case of RS-232 are typically
12V. All Arduino boards have at least one serial (UART) port; their pin assignment:

board

serial communication pins

Arduino Uno, Nano [Rx«0, Tx-1

Arduino Mega, Due

Seriall: pin 19 (RX), pin 18 (TX), Serial2: pin 17 (RX), pin 16 (TX), Serial3: pin 15
(RX), pin 14 (TX)

lamaPLC - http://lamaplc.com/

http://lamaplc.com/doku.php?id=com:basic_i2c
http://lamaplc.com/doku.php?id=com:basic_1wire
http://lamaplc.com/doku.php?id=com:basic_spi

Last update: 2025/09/23 22:07 arduino:arduino_basic http://lamaplc.com/doku.php?id=arduino:arduino_basic

Arduino software serial communication

Software serial communication is made possible by using the SoftwareSerial library. While hardware
serial communication utilizes hardware components for the UART and operates while performing
other tasks (as long as there is room in the 64-byte buffer), software serial communication is handled
by software. This is obviously at the expense of the execution of the other software, but it enables
multiple serial communications at the same time, at a speed of up to 115.200.

Limitations of software serial communication

* If several software serial ports are to be used, only one can receive data at the same time

¢ Not all pins of Mega and Mega 2560 are suitable for software serial communication, the
following pins can be used for RX: 10, 11, 12, 13, 14, 15, 50, 51, 52, 53, A8 (62), A9 (63), A10
(64), A11 (65), A12 (66), A13 (67), Al4 (68), A15 (69).

e For Leonardo, only the following pins can be used for RX: 8, 9, 10, 11, 14 (MISO), 15 (SCK), 16
(MOSI).

¢ On the Arduino Genuino 101, the maximum RX speed can be 57,600 bps, and pin 13 cannot be
used as RX.

Data loss during software serial communication

When you send or receive long messages using software serial communication, they may arrive with
some characters missing. The reason for this is not necessarily evident in the code. The
SoftwareSerial receive buffer may get full and then discard the characters.

The easiest solution to this is to increase the software's serial buffer from the default 64 bytes to 256
bytes (or just larger than 64 bytes):

On the PC, open the following file: C:\Program Files (x86) = Arduino - hardware - Arduino - avr -
libraries = SoftwareSerial » SoftwareSerial.h and change the following line:

// RX buffer size
#define SS MAX RX BUFF 64 // change 64 to max 256, for example

Arduino 12C

One of the most commonly used communications on Arduino boards is IC. The default ports for
communication on the various boards are as follows:

Board SDA (data port) SCL (clock port)|note

Arduino Uno R3 A4 A5

Arduino Uno R4 (Wifi/Minima)|SDA SCL |dedicated ports

Arduino Mega 20 21

Arduino Nano 4 5

Wemos D1 A4 (SDA) A5 (SCD) ?;L(gfpl)iatl)gytcg%tsbe applied to I2C

http://lamaplc.com/ Printed on 2026/01/17 00:34

http://lamaplc.com/doku.php?id=com:basic_i2c

2026/01/17 00:34 13/14 LamaPLC: Arduino basic

Board SDA (data port)|SCL (clock port) note
NodeMCU (ESP8266) D2(GPI04) D1(GPIO5) DO cannot be used for I2C

Arduino SPI

One of the commonly used communications on Arduino boards is SPI. On Arduinos, the ISP connection
module also uses SPI, which is relatively easy to project (unfortunately, SS did not have a place here):

1-MISO @ @) 2- +Vcc
3-SCK @ e 4-MOSI
5-Reset @ ® 6 - Gnd
Board SPI SS SPI MOSI |SPI MISO |SPI SCK
(select)
Arduino UNO 10 11 12 13
Arduino Mega 53 50 51 52
Arduino Nano D10 D11 D12 D13
NodeMCU (ESP8266) D8(GPIO15)|D7(GPIO13)|D6(GPIO12)|D5(GPIO14)

Arduino 1l-wire

The 1-wire bus describes a Dallas Semiconductor Corp. serial interface that handles a data line (DQ)
that is used as both a power supply and a transmit and receive line. The term '1-wire' is misleading
because communication also requires a ground (GND). In fact, even with 1-wire, we always use at
least two physical wires (GND, DQ).

Arduino Ethernet

Arduino is, of course, suitable for communication via Ethernet and access to Internet functions. The
easiest way to access Ethernet is to use an Ethernet module or extension. Modules and add-ons
typically communicate with Arduino boards via SPI:

lamaPLC - http://lamaplc.com/

http://lamaplc.com/doku.php?id=com:basic_spi
http://lamaplc.com/doku.php?id=com:basic_1wire
http://lamaplc.com/doku.php?id=com:basic_spi

Last update: 2025/09/23 22:07 arduino:arduino_basic http://lamaplc.com/doku.php?id=arduino:arduino_basic

5% For Lthemet contraller 55 dor 5D card

SCK
MISO
MOS1

55 for Ethernet controller
ME0

]
Hancheane 55

SCK

=
ey
=
=
z
o
c
=
=

55 for S0 card

D) YLD
- i b [
SMWhOO~ OO

[=]

Arduino Uno Ethernet SPI Pinout Arduino Mega Ethernet SPI Pinout

A micro-SD card reader is also integrated on most Ethernet boards. The use of this is optional, but it
occupies an extra pin on the board.

WIiZnet W5x00 series ICs typically handle the Ethernet communication for modules/extensions. A
comparison of their main features:

Feature W5100 W5300 W5500

Interface Mode direct, indirect, SPI direct, indirect SPI

Number of sockets |4 4 8

Speed (max, MBPS)|25 25 15

Data bus Only 8 Bit, DATA[7:0] |16/8 Bit, DATA[15:8]/DATA[7:0] 16/8 Bit

Title bus 15 PINs, ADDR[14:0] 10PINs, ADDR[9:0] 10PINs, ADDR[9:0]
(Fixed) 16KBytes (Configurable) 128KBytes (Fixed) 32KBytes

Memory size TX : 8KBytes, RX : TX : 0~128KBytes, RX : TX : 16KBytes, RX :
8Kbytes 0~128KBytes 16Kbytes

arduino, basic

This page has been accessed for: Today: 1, Until now: 291

From:
http://lamaplc.com/ - lamaPLC

Permanent link:
http://lamaplc.com/doku.php?id=arduino:arduino_basic

Last update: 2025/09/23 22:07

http://lamaplc.com/ Printed on 2026/01/17 00:34

http://lamaplc.com/lib/exe/detail.php?id=arduino%3Aarduino_basic&media=arduino:arduino_uno_ethernet_pins.png
http://lamaplc.com/lib/exe/detail.php?id=arduino%3Aarduino_basic&media=arduino:arduino_mega_ethernet_pins.png
http://lamaplc.com/doku.php?id=tag:arduino&do=showtag&tag=arduino
http://lamaplc.com/doku.php?id=tag:basic&do=showtag&tag=basic
http://lamaplc.com/
http://lamaplc.com/doku.php?id=arduino:arduino_basic

	LamaPLC: Arduino basic
	A comparison of the technical data of some Arduino boards
	Memory types of Arduino boards
	Flash memory
	SRAM
	EEPROM

	Arduino IDE
	Arduino OTA
	Arduino API
	Arduino Bootloader
	Sketch

	Arduino and USB
	TTL logic levels
	Load capacity of pins
	Use of pins
	Arduino ISP/ICSP
	Arduino ISR
	Arduino PWM
	Arduino AREF pin
	Arduino communication
	Arduino serial communication
	Arduino hardware serial communication
	Arduino software serial communication
	Limitations of software serial communication
	Data loss during software serial communication

	Arduino I²C
	Arduino SPI
	Arduino 1-wire
	Arduino Ethernet

